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Zusammenfassung — Abstract in German

Die vorliegende Dissertation untersucht “Das Generieren von Alternativ-
Losungen fiir diskrete Optimierungs-Probleme mit unsicheren Daten”.

Das Hauptaugenmerk gilt dabei Optimierungs-Problemen vom Summen-Typ,
z.B. Kiirzeste-Wege-Problem, Rundreiseproblem, Zuordnungsproblem, Rucksack-
problem. Bei diesen Problemen besteht eine zulassige Losung aus einer Menge von
verschiedenen Teilkomponenten (z.B. Kanten eines Graphen), denen bestimmte
Kosten zugeordnet sind. Der Zielfunktionswert einer zulassigen Losung ist dann die
Summe der Kosten aller benutzten Teilkomponenten. Gesucht werden Losungen
mit kleiner Kostensumme.

Bevor ein Optimierungs-Problem aus der Praxis mit Methoden der mathema-
tischen Optimierung bearbeitet werden kann, muss es auf die Ebene eines ma-
thematischen Modells abstrahiert werden. Dabei miissen haufig vereinfachende
Annahmen (z.B.: zeitlich variierende Problem-Daten werden geschétzt und fixiert,
komplexe Einfluss-Faktoren werden vernachléssigt, ...) getroffen werden, so dass
das mathematische Modell das urspriingliche Optimierungs-Problem nicht perfekt
widerspiegelt. Dann kann zwar haufig eine sehr gute oder optimale Losung fiir das
Modell berechnet werden, die Giite ist aber in der Realisierung in der Praxis nicht
zwingend gegeben.

Einen Ausweg aus diesem Dilemma bieten Alternativ-Losungen. Das Com-
puterprogramm berechnet im vorhinein mehrere gute alternative Losungen und
ein Experte entscheidet unter Zuhilfenahme aktueller oder zusétzlicher Informa-
tionen, welche er davon realisiert. Gute Aussichten bieten Alternativ-Losungen,
die mit einer “Bestrafungs-Methode” (Penalty Method) berechnet worden sind.

Kapitel 2 stellt zwei grundlegende Ansétze fiir Bestrafungs-Methoden vor, die
(normale) Penalty Method und die Mutual Penalty Method. Die Penalty Method
berechnet zu einer vorgegebenen optimalen Losung eine alternative Losung. Sie ist
bereits aus Publikationen von Althofer und Kollegen (siehe [ABS 2002], [ABSS 2004],
[Ber 2000]) und vor allem aus der Dissertation von Schwarz (siche [Sch 2003])
bekannt. Die der Mutual Penalty Method zugrunde liegende Idee wurde aus der
ebenfalls von Schwarz formulierten Linear Programming Penalty Method entwick-
elt. Sie berechnet keine Alternativlosung zu einer vorgegebenen Referenz-Losung,
sondern direkt ein Losungs-Paar.

Bei beiden Methoden erlaubt ein Strafparameter ¢ > 0, grundlegende Eigen-
schaften der zu berechnenden alternativen Losungen zu steuern. Je grofler der
Strafparameter e ist, desto weniger Teilkomponenten haben die Losungen des
Losungs-Paares gemeinsam. Im Gegenzug nimmt die Giite der Alternativ-Losungen
im Sinne der Zielfunktion ab.



Die richtige Wahl des Strafparameters ¢ und der damit verbundene Vorteil,
aus zwei Kandidaten-Losungen aussuchen zu konnen, wird intensiv in Kapitel 3
mit Hilfe von Computer-Experimenten fiir verschiedene Optimierungs-Probleme
(Kiirzeste-Wege-Problem, Rundreiseproblem, Zuordnungsproblem) untersucht.
Grundidee fiir die Experimente ist folgender 3-Phasen-Ablauf:

1. In einer ersten Phase werden zwei Losungen berechnet (z.B. die optimale
Losung und die Alternativ-Losung fiir einen gewdhlten Strafparameter ).

2. Danach wird jede einzelne Teilkomponente des Problems geméafl folgendem
(p; 1,¢)-Modell, unabhéngig von allen anderen Teilkomponenten, gestort:
Mit Wahrscheinlichkeit p werden die Kosten der Komponente mit einem
zufélligen Faktor A\. multipliziert. Der Faktor A\. wird dabei jeweils un-
abhéngig und gleichverteilt aus dem Intervall [1,¢] C R gewé&hlt.
Mit Wahrscheinlichkeit (1 — p) bleibt die Komponente ungestort.

3. In der letzten Phase darf zwischen den beiden Losungen gewahlt werden.

— Je kostengiinstiger die bessere der beiden Losungen hier im Durchschnitt
ist, desto besser ist der gewahlte Strafparameter e.

Es werden alle in Kapitel 2 vorgestellten Varianten der Bestrafungs-Methoden in
die Untersuchung einbezogen und miteinander verglichen. Es stellt sich z.B. heraus,
dass

e die erzeugten Alternativ-Losungen in allen Féallen mit wachsendem e bis zu
einem optimalen &,(p, ¢) monoton besser werden und ab diesem dann wieder
monoton schlechter.

e sich durch Alternativ-Losungen, besonders im Fall von seltenen aber dafiir
heftigen Storungen, ein deutliches Verbesserungs-Potential ergibt.

e die Mutual Penalty Method zwar nicht schlechter, allerdings auch nicht besser
abschneidet, als die normale Penalty Method. In der Praxis ist damit die
normale Penalty Method, aufgrund ihrer einfacheren Implementierung und
des geringeren Rechen-Aufwands, vorzuziehen.

In kompakter Darstellung werden in Kapitel 4 mehrere weitere Fragestellungen
untersucht, z.B. wie sensibel die Ergebnisse von der Wahl des Strafparameters
abhangen, inwieweit die Ergebnisse auf andere Stormodelle tibertragbar sind, oder
wie viel besser die Ergebnisse sein wiirden, wenn das mathematische Modell perfekt
gelost werden konnte. Auflerdem wird eine Verbindung zwischen den Bestrafungs-
Methoden und der Multi-Kriteriellen Optimierung hergestellt. Hier wird eine
gemeinsame potentielle Schwéche aller vorgestellten Bestrafungs-Methoden deut-
lich, die in zukiinftiger Forschung Ansatzpunkt fiir weitere Verbesserungen sein
kann.

Kapitel 5 fasst die wichtigsten Ergebnisse aus der gesamten Arbeit zusammen
und gibt eine Ubersicht iiber mogliche zukiinftige Untersuchungen.
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Chapter 1

Introduction

Assume we are given an optimization problem that, in abstract form,
represents a “real world” problem. During the transfer process from the real world
problem to the mathematical model, often compromises have to be made that
result in a mathematical model that does not represent the real world problem
perfectly. Then the optimal solution for the mathematical model can differ from
the optimal solution for the real world problem. Reasons for a such compromises
can be:

(i) Unstable data: stochastic variation of the problem data (for instance,
travel times in a road network)

(ii) data or influences are ignored in the mathematical model because

— Lack of Knowledge: data retrieval problems
(political circumstances, cyclic or acyclic fluctuations, calendar, weather,
special events)

— Insufficient calculating power/ability: complexity
(no algorithm available that can handle the complezity, time or memory
restrictions, ...)

(iii) Unclear goals: different users have different utility functions in mind
(short travel time versus comfort versus price versus ...)

There are several approaches that try to handle unstable data. Robust Optimiza-
tion searches for solutions for the mathematical model that are as insensitive as
possible to changes. Then small perturbations in the problem data do not result
in a large drop of the objective function. Stochastic Programming builds a model
of the stochastic variation of the problem data and searches for the solution that
is best in the average case.

Another possibility to handle different types of imperfect models is the gen-
eration of alternative solutions. Here the problem solver generates not only the

4



Introduction 1.1 Optimization Problems under Investigation

apparently best solution but also some different candidate solutions. Then the
planner (human expert) chooses — with the help of additional expert knowledge —
his favorite solution, which finally gets realized.

Penalty methods have a good chance to find reasonable alternatives: For in-
stance, the best solution is computed, and then certain building blocks of this
solution are penalized. The best solution with respect to this modification repre-
sents an alternative solution.

S. Schwarz was first to study this topic for the shortest path problem in his
doctoral dissertation (see [Sch 2003]). We present a more complex simulation of
uncertain data, give results for shortest paths and additional optimization prob-
lems (assignment problem, traveling salesman problem), and provide a widened
experimental analysis.

1.1 Optimization Problems under Investigation

1.1.1 Sum Type Optimization Problems

The following definition is valid for all optimization problems investigated in this
thesis.

Definition 1.1.1 (Sum Type Optimization Problem)

Consider a triple P = (E, F,w). Let E be an arbitrary countable set and F a
subset of the power set P(FE) of E. We call E the base set and the elements of F
feasible subsets of E. Let w : E — R be a real-valued weight function on E. For
every S € F' we set w(S) = > .qw(e). The optimization problem minger w(S)
is called a Sum Type Optimization Problem.

Remarks:

e We use the abbreviation “> -type problem” instead of “Sum Type Optimiza-
tion Problem”.

e The elements S € F' are called feasible solutions.

e The definition of a Y -type problem covers not only minimization problems.
By substitution of w by —w, a maximization problem can be expressed as a
minimization problem.

In the next subsection we briefly list five well known > -type optimization
problems. The first three problems (Shortest Path Problem, Assignment Problem,
Traveling Salesman Problem) are of special interest. We use them for experiments
later in this thesis. The remaining two problems (Knapsack Problem, Sequence
Alignment) are only listed as further examples for ) -type problems.

5



Introduction 1.1 Optimization Problems under Investigation

1.1.2 Examples of Sum Type Optimization Problems
1.1.2.1 The Shortest Path Problem

Consider a directed graph G = (V, E) and a function w : E — RT, assigning a
length to every edge of the graph. Let s and ¢ be two distinguished nodes of G.
The task is to find a shortest path from s to . The length of a path is the sum of
the lengths of the edges used.

Here we deal with shortest paths in weighted directed grid graphs only.

Definition 1.1.2 (Weighted Directed Grid Graph)

A weighted directed grid graph of size n x n is a graph G = (V, E,w) with
V=Av; : 1 <i,j<n}and E = {(vij,v) : i,5,k,l € {1,....,n} with0 <
(k—i) <1,0<(l—j)<land(k—1)+ (l—j) =1} and a weight function
w: E — R. Starting node s is the lower left node v, ; and target node t the upper
right node vy, ,

O

o ()40

The representation as a ) -type problem is obvious. The set of edges E is the
base set, the family of all edge sets that represent simple paths from s to t is the
set of feasible subsets F. Then we have to minimize w(S) over all S € F'.

1.1.2.2 The Assignment Problem

Consider a set of n workers Wy, W, ..., W,, aset of n jobs Ji, J>...,J, and a cost
function ¢ : W x J — R. The task is to find for each worker exactly one job such
that all jobs are done with minimal total cost.



Introduction 1.1 Optimization Problems under Investigation

Here the base set F is the cross product W x J and F' is the family of all
subsets of £/ which represent a complete matching between W and J. Thus, we
obtain a representation as a Y _-type problem: minimize ¢(S) over all S € F.

1.1.2.3 The Traveling Salesman Problem

Consider a set of n cities C' = {c¢y,¢2, ..., ¢, } and for each pair {¢;, ¢;} of distinct
cities a symmetric distance d(c;, ¢;) = d(cj,¢;). The task is to find a permutation
7 of the cities that minimizes the tour length:

—_

n—

() := d(Cx(i), Cr(i+1)) + A(Crnys C(1))-

i=1

Here the base set E is the cross product C' x C' and F' is the family of all
permutations of the cities which represent a closed tour through all cities. This
way we get a representation as a Y -type problem : minimize [(7) over all w € F.

1.1.2.4 The Knapsack Problem

Consider a set of items I = {[3, I, ..., I,}, a weight function w : I — R™, a value
function v : I — R*, and a knapsack capacity C.

The task is to find the most valuable set of items whose sum of weights does
not exceed the capacity of the knapsack.

Choosing I as base set and F' as the family of all subsets whose sum of weights
is smaller or equal to C, we get a representation as a » -type problem: maximize

v(S) over all S € F.

1.1.2.5 The Sequence Alignment Problem

Consider two strings A = (ay,as,...,a,) and B = (by, by, ..., b,,) of characters of
an alphabet I' and a scoring function v : TU{_} x TU{_} — R. In an alignment of
A and B it is allowed to insert gaps (“.”) in both strings, resulting in new strings
A and B. A and B have the same length I(A, B).
1(8,8)
The task is to find the alignment with the highest total score Z (@, b).
i=1

As base set we can use ' U {_} x I'U{_}. The family F' consists of all subsets

S which represent an alignment of A and B. Thus we have our > -type problem:

maximize v(S) over all S € F.



Introduction 1.2 Overview

1.2 Overview

This thesis is organized as follows. Chapter 2 introduces two basic concepts of
penalty methods in detail. First, the (normal) penalty method generates an ap-
propriate alternative solution for a given reference solution. Second, the mutual
penalty method directly generates two good candidate solutions. In both cases a
penalty parameter allows to control fundamental properties of the solutions. These
methods will be demonstrated both with exact algorithms and with heuristics.

Chapter 3/ is the heart of the thesis. It starts with an introduction to the
experimental setup and the simulation of uncertain data.

In a planning phase we are given a » -type problem P = {E, F,w}. We
are allowed to prepare two different solutions: a first alternative S,, and a
second alternative S,,. Then — in the time between the planning phase and
the execution phase — the edge weights change in some random way from w
to w. In the execution phase we choose the candidate solution of the pair
(S4,,S4,) that is better with respect to the new weights .

Our simulation of uncertain data is based on a perturbation model introduced by
Schwarz (see [Sch 2003]). We extend this model in such a way that we can control
not only the expected size of perturbations but also the frequency.

Sections 3.3/ and 3.4/ analyze the improvement achieved by the choice from two
candidate solutions and the optimal choice of the penalty parameter in contrast
to the situation where only one solution is available. Section 3.3 deals with exact
algorithms and Section 3.4 with heuristics. Section 3.5 comments on the stability
and variation of the simulation results.

Chapter 4 concisely discusses six additional questions that arouse in Chapter 3
or that are not taken into account there. Chapter [5 presents conclusions and open
problems.



Chapter 2

Penalty Methods

2.1 Introduction

There are two main criteria for good alternatives. First, an alternative should be
good with respect to the objective function. Second, an alternative should have
little in common with the original solution. Otherwise it would not be a true al-
ternative. Taking only the first criterion into account, one may simply compute
k-best solutions. Practical experiences show that this method generally does not
fulfill the second criterion. Typically, k-best solutions are only micro mutations of
the original optimum, differing only in very small details.

As an example, Figure 2.1/shows the 10° shortest paths of a 100 x 100 grid graph
with random edge lengths (w(e) uniformly distributed in [0, 1] C R, independently
and identical distributed for all e € E). Figure 2.2/ shows only the shortest path
and the 10°-th shortest path of the same graph.

To find truly alternative solutions with the k-best method one often has to com-
pute k-best solutions for very large values of k [Ber 2000]. But even a very large k
does not guarantee the diversity of the alternative and the original optimal solu-
tion. A larger k gives a better chance to find a true alternative but not necessarily
a good chance. This can be seen in Figure 2.3. Every point in the diagram repre-
sents one of the 10 shortest paths from the example in Figure 2.1. Horizontally
the solutions are ordered by their length and vertically they are ordered by the
length of the way they share with the shortest path. Even among the worst solu-
tions (within this set) there are some that are nearly identical to the shortest path.

A method that allows to directly control the diversity is the Penalty Method
(see [Ber 2000], [ABS 2002], [Sch 2003]).



Penalty Methods 2.1 Introduction

Figure 2.1: The 10° shortest paths Figure 2.2: The shortest and the
of a 100 x 100 grid graph, printed 10°-th shortest path of a 100 x 100
in overlap. grid graph, printed in overlap.
47.52

shar ed

| ength
with
short est
pat h

28. 98

47.52 l ength 47. 86

Figure 2.3: The 10° shortest paths of a 100 x 100 grid graph.
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Penalty Methods 2.2 Generating Alternative Solutions by Penalties

2.2 Generating Alternative Solutions
by Penalties

2.2.1 The Penalty Method

The following definitions can also be found in [ABS 2002] (pp. 2-3) and [Sch 2003]
(pp. 7-9), although with different names and symbols.

Definition 2.2.1 (Penalty Method, [ABS 2002])
Consider a y -type problem P = (E, F,w) with base set E, set of feasible subsets F'
and real-valued weight function w. We call Sy the optimal solution of the problem
minger w(S). If there is more than one optimal solution, we may choose any of
them.
For every € > 0, let S. be one of the optimal solutions of the problem

wep o)

_ {(1+5)-w(e) . ife € So

with w(e) := w(e) : otherwise.

We call S, an e-penalty solution and the approach Penalty Method.

Additionally, we define the solution S, of the problem
Seo 1= 16XI§1€11151(1U(S N Sp), w(S)).

‘Lex min’ means lexicographic minimization: S, has minimal weight intersection
with Sy and among all such solutions S, is one with minimal weight w(S).

In general the solutions S, can be found with the same algorithm which solves
the unpunished problem minger w(S). We only have to change the weight values
w for the elements e € Sy. So, computing the alternative is not harder than com-
puting the optimal solution.

Depending on the problem structure it can be advantageous to penalize not
only the shared parts (S N Sp) but also solution parts that are “close” to the
original solution Sy. A generalized version of the penalty method gives much room
for the choice of a suitable type of punishment.

Definition 2.2.2 (Generalized Penalty Method, [ABS 2002])
Consider a Y _-type problem P = (E, F,w) with base set E, set of feasible subsets
F, weight function w : E — R and positive function p : E — R™.

11



Penalty Methods 2.2 Generating Alternative Solutions by Penalties

For every € > 0, let S. be one of the optimal solutions of the problem

min w(S)

with  w(S) = w(S) + ¢ - p(9).

We call S, an e-penalty solution.

Additionally we define the solution S, of the problem

Seo 1= lexrgleilxml(p(S), w(S)).

‘Lex min’ means lexicographic minimization: S, has minimal value p(S) and
among all such solutions minimal value w(S).

2.2.2 Theoretical Background

The penalty method has nice properties that make it a useful approach to find
alternative solutions. These properties are given by the following theorem:

Theorem 2.2.3 (Althéfer, Berger, Schwarz [ABS 2002])

Let w : E — R be a real-valued function and p : E — R™ be a positive real-valued
function on E. Let S, be defined according to Definition 2.2.2. The following four
statements hold:

1. p(S.) is weakly monotonically decreasing in .

2. w(S.) is weakly monotonically increasing in &.

3. w(S:) — p(S:) is weakly monotonically increasing in €.

4. w(S:) + € - p(S.) is weakly monotonically increasing in €.

So the larger the penalty parameter ¢, the less punished parts are contained in
the solution S.. For the basic penalty method this means that alternative solution

S. and original optimum Sy have less and less in common. In compensation, the
original objective value w(.S) is getting worse.

The tradeoff between these two criteria (objective value vs. diversity) is of
special interest for this thesis. In Chapter I3 we describe and discuss several exper-
iments to determine a penalty parameter € that best balances this tradeoff.

12



Penalty Methods 2.2 Generating Alternative Solutions by Penalties

2.2.3 The Penalty Method with Heuristics

Assume we are given a problem which we are not able to solve exactly within a
given time. Instead, we might be able to solve the problem heuristically. Then
we are also able to calculate heuristically an alternative solution using the penalty
approach. We only have to replace “optimal solution” by “heuristic solution” in
Definitions 2.2.1 or 2.2.2. The basic case is given in Definition 2.2.4.

Definition 2.2.4 (Penalty Method with Heuristics)

Consider a Y _-type problem P = (E, F,w) with base set E, set of feasible subsets
F and real-valued weight function w. Let Sy be a heuristic solution of the problem
minger w(S).

For every 0 < £ < 00, let S. be a heuristic solution of the problem

min w(S)
SeF
. [ (+4e) -w(e) : ifee So
with w(e) := { w(e) : otherwise.

We call S. a heuristic e-penalty solution and the approach Penalty Method with
Heuristics.

Using the penalty method with a heuristic, we are not able to give a theorem
that guarantees monotonicity. For the exact case we know that the value w(S;)
of an e-penalty solution S. is getting worse for increasing . A heuristic gener-
ally finds a solution that is not globally optimal. Therefore, it produces 'good’
solutions for some penalty parameters and 'bad’ solutions for other penalty para-
meters as Example 2.2.5/shows. But if we generate many instances of the problem
and calculate average values the penalty method works smooth again as Example
2.2.6l shows. So Schwarz conjectured that for many problems and heuristics the
penalty method with heuristics behaves on average as the penalty method with
exact algorithms (see [Sch 2003]).

Under the assumption that this conjecture is true we take a look at these
(difficult) problem classes we solve heuristically with local search algorithms (see
Appendix ‘A.2 for more details): the traveling salesman problem and the assign-
ment problem. Our aim is to check whether the observations we made for the
exact case remain true (on average) for the penalty method with heuristics.

Example 2.2.5

Consider the traveling salesman problem (TSP) as defined in Subsection [1.1.2.3.
We generated one instance of a TSP by randomly choosing n cities, uniformly
distributed in the unit square [0,1]* and afterwards calculating the symmetric
euclidian distances d(c;,c;) (i,j = 1,...,n,% # j) between all cities. With a
local search algorithm (as described in Appendix [A.2) we calculated a locally

13
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optimal solution Sy and a whole set of heuristic e-penalty solution§ S. for all
e € {0.025,0.05,...,2.00}. Figure 2.4 shows the objective values w(S;) (marked
by 0) and the lengths of the shared edges w(SoN.S:) (marked by x ) of the heuristic

e-penalty solutions with respect to the penalty parameter e.

Example 2.2.6

We generated 10° instances of the TSP in the same way as in Example 2.2.5. For
each instance we calculated a locally optimal solution Sy and heuristic e-penalty
solutions S. for all € € {0.025,0.05,...,2.00}. From the data of the 10° instances
we finally calculated average lengths w(S.) (marked by 0) and the average lengths
of the shared edges w(Sy N S.) (marked by x ) for all penalty parameters . The

results are shown in Figure 2.5.
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Figure 2.4: Lengths w(S:) (marked by 0O) Figure 2.5: Average lengths @(S.) (marked

and lengths of the shared edges w(Sy N S.) by 0) and average lengths of the shared
(marked by x) of heuristic solutions of a edges w(Sp N S¢) (marked by x) of
randomly generated TSP with n = 25 heuristic solutions of 10° randomly
cities. generated TSPs with n = 25 cities.

2.3 Generating Solution Pairs
by Mutual Penalties

When we were looking for a good solution pair in Section 2.2/ we always generated
an optimal solution in a first step. Afterwards — in a second step — we looked for a
suitable alternative solution. Although this approach is computationally very easy
and seems to be quite successful, it is in no way clear that the best single solution
must be part of the pair of solutions.

In this section we follow a different approach. From the outset we look for a
good pair of solutions.

14
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In an ultimate sense the best pair would be two completely different, globally
optimal solutions. In general such a pair does not exist. We try to come as close
as possible to this case by introducing mutual penalties for shared parts of the
solutions.

2.3.1 The Mutual Penalty Method

The idea for this method is taken from the doctoral dissertation of S. Schwarz (see
[Sch 2003] p.20). There he introduced a “Linear Programming — Penalty Method”
that is a special case of our method. His method focuses on generating good pairs
of short paths in linear programming. But this idea allows a much more general
approach that does not depend on linear programming.

Definition 2.3.1 (Mutual Penalty Method (M PM))

Consider a Y _-type problem P = (E, F,w) with base set F, set of feasible subsets
F' and real-valued weight function w.

For every € > 0, let {51(5), Sg(a)} be one of the optimal pairs of solutions of the
penalized problem

i we (51, S
(ol 0e(51,52)

with

We(Sh,52) ==Y _wle)+ Y wle)+e- Y wle)

e€Sy e€Sy e€S1NS2

We call {S1), Sa(e)} an e-penalty pair and the approach Mutual Penalty Method.
We call the task to solve a _-type problem by the Mutual Penalty Method M P M-
problem.

Additionally we define the solution pair {:S1(sc), S2(ec)} Of the problem

lex_in_(w(S;152), w(S1) + w(S2))

‘Lex min’ means lexicographic minimization: the solutions {S}(sc), S2(s0)} have
minimal weight intersection with each other and among all such solutions
{S1(x), S2(c) } have minimal sum of weights (w(S1) + w(S2)).

Assume we are given a » -type problem mingep w(S) with w(S) =" .qw(e)
(see1.1.1). For every e € E we know its weight w(e) that we can interpret as cost.
So, if a solution uses a certain element e; € E, it costs w(e;). The general idea is
to penalize when both solutions of the pair use the same element e. So we assume
that every element e € E is available only one time for cost w(e). If the other
solution requests the same element we have to pay some extra amount. This is

15
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accomplished by a penalty parameter € > 0. Thus the total cost to use an element
e twice is (24 ¢) - w(e).

Although we restrict our considerations to this approach it can be defined in a
more general way as follows:

Definition 2.3.2 (Generalized Mutual Penalty Method (GM PNM))
Consider a _-type problem P = (E, F, (wy,ws)) with base set E, the set of feasible
subsets F', two real-valued weight functions wi,wy : F — R and a positive real-
valued penalty function p : E — R*.

For every € > 0, let {Si(.), Sa)} be one of the optimal pairs of solutions of the
penalized problem

min UA}E(Sl, Sg)
{S1,S2}€F
with 2156(51, SQ) = wl(Sl) + U)Q(SQ) +e- p(Sl, Sg)

We call {Si(c), So(e)} an e-penalty pair with respect to (wi,ws, p).

Additionally we define the solution pair {S1(s0), S2(sc)} Of the problem

fex {511,%121}16F(p(51’ Sa), w1 (S1) + w2(S2)).

‘Lex min’ means lexicographic minimization: the solutions {Si(sc), S2(s0)} have
minimal value p(Si, Sz) and among all such pairs minimal value (wy(S7)+ws(Sz)).

The GM PM is equivalent to the basic M PM if w(e) := wy(e) = wy(e) for all
e € E and the penalty function p: £ — R is chosen as

._ 0 : e¢{S1NSy},
p(S1, Se) = Z { w(e) : e€{S1NS}.

66{51U52}

In general, the (normal) penalty method and the mutual penalty method lead to
different results. The normal penalty method calculates the optimal solution and a
suitable alternative. The mutual penalty method generates a pair of good solutions
with relatively small overlap. The normal optimal solution is not necessarily part
of this pair.

Figure 2.6/ shows an example with short paths. The shortest path from s to ¢ is
the path Py = (a, b, ¢) with length 30. For all € > 0.1 the e-penalty pair contains
the path Py and the path P, = (d, ¢). The pair (P, P;) has a total length of 62 and
shared length of 10. For all € > 0.4 the mutual penalty method produces the pair
(P, Py) with P, = (a,e). This pair has a total length of 66 and a shared length of
zero. The solution pair does not contain the shortest path F.

16



Penalty Methods 2.3 Generating Solution Pairs by Mutual Penalties

Figure 2.6: Shortest Path Example — The e-penalty pair {(d, ¢), (a,e)} for € > 0.4 does not
contain the single optimal path (a,b, ¢).

2.3.2 Theoretical Background

For the penalty method Theorem 2.2.3 gives fundamental results how the generated
alternatives depend on the penalty parameter €. Theorem 2.3.3 gives analogous
results for the generalized mutual penalty method.

Theorem 2.3.3

Consider a ) -type problem P = (E, F, (wy,ws)) with base set E, set of feasible
subsets F', two real-valued weight functions wi,ws : EF — R and positive real-
valued penalty function p : E — R,

Let {S1(c), Sa(e)} be defined for e € R™ according to Definition 2.3.2. It holds:

() p(Si(e), Sa(e)) Is weakly monotonically decreasing in .
(i) wi(S1(e)) + wa(Sae)) is weakly monotonically increasing in €.
(iii) w1 (Si(e)) + wa(S2(e)) — P(S1(e), Sa(e)) Is weakly monotonically increasing in €.

(iv) w1 (S1(e)) + w2(Sa(e)) + € - P(S1(e), Sa(e)) Is weakly monotonically increasing in
€.

Proof
Let € and é be two arbitrary positive real numbers with 0 < ¢ < . Because of the
definition of (Si(e), Sa(e)) and (Si(s), Sas)) the following inequalities hold.

(i) If e < 0o we have

w1 (S1(e)) + w2(Sae)) + € P(Si(e), Sa(e)) < w1 (Ss)) + w2(S2s)) + € - P(S1(6), S2(s))

(2.1)
w1(Sie)) + w2(S2(e)) + 0 - p(Si(e)s S2(e)) = wi(S1(5)) + w2(S2s)) + 3 - p(Si(5), S2s))-
(2.2)
Subtracting (2.2) from (2.1) we get
(e = 0) - p(Si(e), Sa(e)) < (€ = 6) - p(Si(s)s S206)) | 1 (e =90)
& P(S1(e), Sa(e)) < p(Si(s): S2(6)) (2.3)
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In case of € = oo inequality (2.3)) follows directly from the definition of {Si(sc), S2(s0) }-

(ii) Subtracting (2.3) multiplied with 0 from (2.2) we get
wi(S1e)) + w2(Sae)) = wi(Sis) + w2(S2))- (2.4)
(iii) Subtracting (2.3) from (2.4) we get

w1 (S1(e)) + w2 (Sa(e)) — P(Si(e), Sae)) = wi(Si(s)) + wa(Sas)) — P(Si(s): Sas))-
(iv) With € > § > 0 we have

w1 (S1(e)) +w2(Sae)) + € p(Si(e), S2(e)) = w1 (S1(e)) + w2(S2e)) + 0 - p(Sie), Sae))

Together with (2.2) we get

w1 (S1()) + w2(Sa(e)) + € - P(Si(e), Sae)) = w1 (Si(s)) + w2(S2s)) + 6 - P(S1(5), S2(5))
]

Conclusion:

For the generalized mutual penalty method we proved analogous results as are
known for the (normal) penalty method. So this method can also be used to
control the main quality criteria of alternative solutions. With increasing penalty
parameter ¢ we get solution pairs (S(c), Sa(<)) Which contain less and less penalized
(= shared) parts p(Si(c), S2())- In compensation, the sum of the objective values
(w1(S1(e)) + w2(Sae))) gets worse.

2.3.3 Solving an MPM-Problem

In contrast to the normal penalty method we can not find the e-penalty pair
{S1(), Sa(e) } with the same algorithm that solves the original problem.

Consider a ) -type problem P = (E, F,w). Every feasible solution S € F is an
extremal point of the power set P(E) = {0,1}¥ of the base set E. The extremal
points of the convex hull conv(F) C [0,1]F are the feasible solutions itself and the
objective function is linear. Thus there is an optimal solution that is an extremal
point of conu(F'). This leads directly to

Remark 2.3.4
Every  -type problem P = (E, F,w) can be represented by a linear program LP.

The corresponding M PM-problem can be written as another Y -type problem
(Evipars Fupa, W) with base set Eypy := E X B, set of feasible subsets Fypy, =
F x F and real-valued weight function w(e) : E,py — R as defined in Definition
2.3.1l or 2.3.2.
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Remark 2.3.5
Every M PM-problem is a ) -type problem itself and thus can be represented by
a linear program LP.

The LP representation above is quite complicated and mostly of theoretical
interest. For the shortest path problem Schwarz showed how to model the cor-
responding linear program - that solves the M PM-problem - much easier (see
[Sch 2003] p.21). For the assignment problem we show in Subsection 2.3.3.1 how
to model the penalized problem as a linear program. This example illustrates how
the linear programming approach may work for other problems.

For certain ) -type problems an exponential number of constraints is needed
to represent the polytope of the feasible solutions in a linear program. Such prob-
lems are not efficiently solvable by linear programming. Certain » -type problems
are much easier formulated as integer linear programs (ILPs). But integer linear
programming is NP-complete in general, thus ILPs are hard to solve, too.

With respect to possible restrictions concerning the computation time it might
be better to solve the M PM-problem approximately with a heuristic algorithm.
For example, it is quite easy to find locally optimal solutions of the M P M-problem
with local search algorithms. This approach is shown in Subsection 2.3.3.2.

2.3.3.1 Linear Programming

The Assignment Problem

The assignment problem presented in Subsection 1.1.2.2/ can be stated as a linear
program L P%*P:

min E Cij * Tij

ij=1,....,n

s.t.: Z zi; =1 forallj=1,...,n,
i=1,...,n

Z zi; =1 foralle=1,...,n,
Jj=1,...,n

0<az;;<lforalli,j=1,...,n.

A binary variable z; ; € {0,1} indicates an assignment of worker W; to job J;
and ¢; ; corresponds to the cost of the assignment.

A feasible solution of the linear program is not necessarily a regular assignment,
as the variables x;; might have non-integer values. The assignment problem is a
special case of the minimum cost flow problem. There is a theorem for network
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flow problems ([AMO 1993], p.318) stating that “if all arc capacities and sup-
plies/demands of nodes are integer, the minimum cost flow problem always has an
optimal solution where all variables are integer”. Thus the existence of an optimal
solution where all variables are integers is guaranteed.

This integer solution is easy to find. If one is using a simplex algorithm to solve
the linear program, then the solution will always consist only of integers since every
extremal point consists only of integers. In contrast, an interior point method does
not necessarily find an integer solution.

For the corresponding M PM-problem we double the number of variables.
Every assignment of a worker W; to a job J; gets two variables z;; and y;;. If
an assignment W; — J; is used in both solutions, then both variables z;; and y;;
have value 1. If an assignment W; — J; is used only in one solution, then z;; shall
be 1 and y;; shall be 0. Otherwise both variables x;; and y;; shall be 0. The linear
program LP*P is given by

min Z Cij - Tij + (L +€) - cij -y (2.5)
ij=1,...,n
s.t.: Z Tij+y; =2 forallj=1,... n, (2.6)
i=1,...,n
Z zij+y; =2 foralli=1,...,n, (2.7)
Jj=1,...,n

ngij,yijglfor alli,jzl,...,n.

A solution of LP*? does not give two simple assignments directly. The connec-
tion between the solution of the linear program LP%? and the original task to find
two good assignments is established by Theorem 2.3.6. In [Sch 2003] an analogous
theorem for short paths had been given.

Theorem 2.3.6
If the linear program LP®" has an optimal solution then it also has an optimal

solution (z,y) with the following properties. There are disjoint sub-assignments
El,EQ, E3 g E with

(1) ElmE2:®7 ElﬂEgzﬁandEgﬁEgz(Z),
(ii) x;; =1 and y;; = 0 for all pairs (W;, J;) € E; U Es,
(iii) x;; = 1 and y;; = 1 for all pairs (W5, J;) € Ej,

(JV) Tij = 0 and Yij = 0 for all pairs (Wz, J]) ¢ E1 U E2 U E3,
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(v) E1 U Ej represents a complete assignment S; of jobs to workers and Es U E3
represents a second complete assignment Sy of jobs to workers. FEs is the set
of assignments used by both S; and Ss.

(vi) No other pair (Q1,Q2) of assignments is better than (S, Ss), i.e.,

w(S1) + w(S2) + - w(S1 N S2) < w(@Qr) +w(Q2) + - w(@iNEQ2),
for all pairs (Q1, Q2)

That means the sum of the assignment costs of S and S, plus a penalty for
assignments used twice is minimal.

Proof:
The linear program LP*P is a special case of the minimum cost flow problem.
Thus the existence of an optimal integer solution (z,y) with

xij; yij S {0, 1} (28)

can be derived from the theory of network flows ([AMO 1993], p.318).
From the objective function (2.5) and the integer property (2.8) we know that

(yi; = 1) = (25 =1). (2.9)

As stated in (iii), let E5 be the set of assignments (W;, J;) with z;; = y;; = 1.
Consider (i, jo) with (W;,, J;,) € Es. From (2.6) and (2.7) it follows that

Ligs = Yioj = Lijo = Yijo — 0 for all j 7A jo and all ¢ 7A Z'() (210)

Thus E3 has to be the sub-assignment that both complete assignments S; and Sy
have in common.

Now we can remove all workers W; and jobs J; that are already part of the
sub-assignment F3. Let |E3| denote the number of assignments in F3. From the
Constraints (2.6) and (2.7) it follows that there remain 2(n — |FE3|) assignments
(VVZ‘, JJ) € E1 U E2 with Tij = 1 and Yij = 0.

The following construction with alternatingly bi-colored edges proves that the
remaining 2(n — |E3|) single assignments can be decomposed into two complete
assignments F; and Fs of the remaining workers to the remaining jobs.

Without loss of generality, let Wy, W5, ..., W(,_|g,)) be the remaining workers
and Ji, Ja, ..., Jin—|E,)) the remaining jobs, respectively. We start with worker 1,
and the color red. (It might be advantageous to have the visualization of a bipartite
graph in mind, as seen in Figures 2.7 and 2.8 below.) First, we color the edge that
connects W; with it’s lexicographically first assigned job Jj;,. We switch to color
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green. From Constraint (2.7) it follows that there is another worker W;, assigned
to this job J;,. The edge that connects W;, and J;, we color green. From (2.6) we
know that there is another job J;, assigned to worker W, . If the connecting edge
is still uncolored we color it with red. Now we color the other edge from Jj, to a
worker W;, again with green, and so on.

Figure 2.7: Graph-visualization of a solution (x,y) of an assignment M PM-problem LP2P
with n = 5.

If we get to a worker where no uncolored edge remains, we are either done
or completed only another sub-assignment. If we colored less than 2(n — |E3|)
edges, we simply have to continue the algorithm with another worker that still has
uncolored edges.

All assignments (W;, J;) colored red we put in E; and the others colored green
we put in FEs, respectively. This way we get two sub-assignments Fy, Fy with
E,N FEy = 0. Finally F; U E5 and Ey U E3 represent two complete assignments of
all n workers to all n jobs.

From (|Ey|+ |Es|+2-|Es|) = 2n and (2.6) and (2.7) we directly get (iv). Thus
the statements (i) - (v) are proven.

Concerning (vi), every feasible solution pair (Qi,@2) of assignments corre-
sponds also to a feasible solution of LP%P?. Thus (Q1,)2) cannot be better than
the pair (S1,.52) derived above.

O

Remark 2.3.7

If the solution (x,y) of an assignment M PM-problem LP®P? consists of several
complete sub-assignments, the decomposition into two complete assignments Sy, Sa
is not unique.
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Figure 2.8 shows two possible cases for the example given in Figure 2.7. Our
construction ignores the cost of the single assignments. Taking the costs into

account to construct the most balanced decomposition would be a much more
difficult task.

Figure 2.8: Graph-visualization of two possible decompositions of the solution (z,y) shown in
Figure 2.7/ into two complete assignments (57, .52).

2.3.3.2 Heuristics

Here we describe briefly how to use a given local search algorithm (as described
more detailed Appendix [A.2) to find a locally optimal solution pair {5’1(6), 52(5)}
for the M PM-problem. The solutions can not be found one after the other. The
mutual approach requires a simultaneous search for two solutions. Therefore we
use the original neighborhood N as reference. Let S;, Sy C F be two arbitrary
solutions. Then let the new neighborhood N, be defined as

Npair := {Npair(S1,S2) : 1,52 € F}
with  Npair(S1,S2) := {{N(S1), S2} U {S1, N(S)}}

Algorithm 2.1/ outlines a local search for solution pairs of an M PM-problem using
the neighborhood Npu;. As in the case with the penalty method (see Subsection
2.2.3)) we use for the experiments the “fast” strategy with a “randomized cyclical”
search order (see Appendix|A.2)). The initial solution pair {Sfo), Séo)} is generated
randomly.

23



Penalty Methods 2.3 Generating Solution Pairs by Mutual Penalties

Require: P = (E, F,w), Npqr, initial solutions 550)7 5’50) eEF
1: t:=0;
2: calculate w(Sy), Sét))
3: while (not done) do
4:  search {Sitﬂ), Sétﬂ)} € Npair(SY), Sét)) with w(S£t+l), Sétﬂ)) = w(SY), Sét)) <0
5:  if found then
6 t:=t+1;
7. else
8: done;
9: pair {S%t), Sét)} is locally optimal for P

Algorithm 2.1: basic local search for a mutually penalized problem
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Chapter 3

Experiments

3.1 Introduction

3.1.1 Idea

We consider the following situation: In a planning phase we are given a Y -type
problem P = {FE,F,w}. We are allowed to prepare two different solutions: a
first alternative S,, and a second alternative S,,. Then — in the time between
the planning phase and the execution phase — the edge weights change in some
random way from w to w. Finally, in the execution phase, we choose the solution
from the pair (S,,, Sa,) that has the better value with respect to the new weights .

Then we can compare the situation where we have the choice between the two
alternatives S,, and S,, with the situation without choice. Let Sy be the optimal
solution of the original problem. A measure of quality is given by the performance
ratio

E min (@(S,, ), ©(S,,))
E @w(Sp)

The smaller this ratio, the larger is the expected use of having alternatives.

3.1.2 Random Generation of Problem Instances

In order to determine experimentally an approximation of the expected perfor-
mance ratio we need a large number of different problem instances. In this subsec-
tion we describe briefly the random generation of three Y -type problems we have
chosen for the experiments: the shortest path problem, the assignment problem
and the traveling salesman problem.
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Shortest Paths in Weighted Directed Grid Graphs (SP) Consider a di-
rected grid graph G = (V, E) and a function w : E — R™, assigning a length to
every edge of the graph (as defined in Subsection 1.1.2.1). The lengths w(e) for

all e € E are independent random numbers, uniformly distributed in the interval
[0,1] C R.

Assignment Problem (ASP) Consider a set of n workers Wy, Wy, ... . W, a
set of n jobs Ji,Jy...,J, and a cost function ¢ : W x J — R (as defined in
Subsection 1.1.2.2). The costs ¢; ; for i,j = 1,...,n for an assignment of worker
W; to job J; are independent random numbers, uniformly distributed in [0, 1] C R.

Traveling Salesman Problem (TSP) Consider a traveling salesman problem
as defined in Subsection 1.1.2.3. We generate problem instances by randomly
choosing n cities, uniformly distributed in the unit square [0, 1]*> C R? and after-
wards calculating the symmetric euclidian distances d(c;, ¢;) (i,7 =1,...,n, i # j)
between all cities.

3.1.3 Random Perturbation of the Problem Data

Definition M1 ((p;1, c)-model)
Consider one of the presented Y -type problems P = (E, F,w). We simulate the
corresponding “real-world” problem by defining perturbed weights

(e) = Ac(e) -w(e) : with probability p
€= w(e) : with probability 1 —p

independently for all elements e. Here the \.(e) are independent random numbers,
uniformly distributed in the interval [1,c¢] C R. We call the parameter 0 < p <1
perturbation probability and the parameter ¢ > 1 perturbation width. This
perturbation model is called (p;1, ¢)-model.

For fixed p = 1 Schwarz made experimental studies on the generation of mul-
tiple candidate solutions (see [Sch 2003]). He analyzed the situation where all
values changed slightly (small ¢). We think that a generalization for arbitrary
perturbation probabilities p is a promising extension of his model. So by choosing
a small perturbation probability p and a large perturbation width ¢, we are able
to simulate a situation where only a few parameters of the problem change, but
these changes are typically heavy.

For the shortest path problem — as an example — the old weights w can be
interpreted as ideal travel times and the new weights as the real travel times in a
road network, affected by traffic densities, roadwork or weather.
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Experiments 3.2 Overview

3.1.4 Brief Note on the Implementation

All our experiments are implemented using C+4. The algorithms we need to
solve the different problems are well known. So we forego a detailed description.
Partially it was possible to use freely available C+4 implementations of the algo-
rithms. Then we also mention the source.

For the experiments we need very large numbers of different instances of the
problems. The random generation and the random perturbation of the problem

data is done using the pseudo-random number generator from Matsumoto and
Nishimura (Mersenne Twister, see [MN 1998], [MN 2002]).

Shortest Paths in Weighted Directed Grid Graphs (SP) For the short-
est path problem we use only exact algorithms. For the penalty method we use
an implementation of Dijkstra’s algorithm (see [AMO 1993|, [JM 1999]). For the
mutual penalty method the linear programming approach described in Subsection
2.3.3.1l is used. The linear programs itself we solve using “lp_solve”, an open
source (mixed-integer) linear programming system that has — among others — an
interface to C++ (see [BEN 2004]). For comparison we also use a k-best algorithm
to compute k-shortest paths (see [Epp 1998|, [JM 1999)]).

Assignment Problem (ASP) We analyze the assignment problem in two dif-
ferent ways. First, we use exact algorithms. For the (normal) penalty method
we use the hungarian method (see [MS 1991]) and for the mutual penalty method
again linear programming (1p_solve, see [BEN 2004]). In another approach we use
local search heuristics for the penalty method (see Subsections 2.2.3 and 2.3.3.2).
The idea of this double analysis is to see how the penalty methods for exact algo-
rithms and heuristics work in comparison.

Traveling Salesman Problem (TSP) The traveling salesman problem (see
[Rei 1994]) is an NP-hard problem and a well known example for the success-
ful application of local search (see [AL 2003] pp.652-673). So we again use this
heuristic to compute locally optimal solutions (see Subsections 2.2.3/ and 2.3.3.2).

3.2 Overview

Here we give an outline of all experiments we present in the remaining sections of
this chapter.
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Experiments 3.2 Overview

In Section 3.3 we investigate the penalty methods with exact algorithms. First,
in Subsection 3.3.1 we analyze the expected performance
_ E min (@(Sp), w(S:))
ve E @(S)

by an additional e-penalty solution generated with the (normal) penalty method.
Second, in Subsection 3.3.2l we analyze the expected performance
m . E min (@\(Sl(a)),@(SQ(g)))
Ve E @(S)

by the possibility to choose one of the solutions of an e-penalty solution pair
generated with the mutual penalty method. After we have compared the results of
both methods in Subsection [3.3.3, we support experimentally in Subsection [3.3.4
the statement that k-best solutions are no good alternatives (see Subsection 2.1)).
In Section 3.4 we investigate the penalty methods with heuristic algorithms.
With heuristics we are not interested in the performance in comparison to a single
locally optimal solution Sj;. In general, a significant performance improvement

E min (0(Sp), W(Si))
E w(Sh)

is already assured by independently generating another locally optimal solution
Sia. It would not be clear how big the part of the penalty methods is if we consider
the ratio as

E min (@(5n), @(S:) B min (@(Sie), D(Sae)))
E w(S)) E @(Si) '

Thus we directly analyze the relative improvement in comparison to a pair of
independently generated locally optimal solutions S;; and Si;. With the penalty
method (Subsection 3.4.1) we analyze

)
)
2

4.2) we analyze

€
2

_ E min (w(Sy), (S
=T B min (@(50), @(3
and with the mutual penalty method (Subsection 3.

Xm N E min (@(51(5))7@(S2(2)>>
* 7 E min(@(Sh), ©(Se))

In Subsection 3.4.3] we compare the results of both heuristic methods.

For all cases we analyze the dependencies on problem parameter n and pertur-
bation parameters p and c. For all these experiments we use the (p; 1, ¢) perturba-
tion model presented in Subsection (3.1.3.
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Experiments 3.3 Results of the Experiments with Exact Algorithms

In Section [3.5/ we conclude this chapter with a statistical analysis of the pre-
sented results.

In Chapter 4/ we report results of additional investigations (see page 57). There
we do not present the results in such a scope as in this chapter.

3.3 Results of the Experiments with Exact
Algorithms

3.3.1 The Penalty Method — Relative Improvement by an
Additional e-Penalty Alternative

In this subsection we focus on the case that we have an e-penalty solution S;
additionally to the original optimal solution Sy. We analyze the average relative
improvement by alternative e-penalty solutions with respect to the penalty para-
meter €.

3.3.1.1 The Influence of the Penalty Parameter ¢

For a randomly generated » -type problem P = (E, F,w) we first calculate a glob-
ally optimal solution Sy. Then, for an arbitrary € > 0, the penalty method gives us
the corresponding alternative solution S.. We can take influence on this solution
only by choosing the penalty parameter ¢.

We calculate a whole set of e-penalty solutions {S. }.¢;. for different parameters
e€l.:={e1,e9,...,en} with 0 < e] < &9 < ... <en. We get N solution pairs

{SO, 581}7 {SOa Saz}a R {507 SaN}
and can calculate the values:
w(Sh) and min (w(Sp), w(Se,)) fori=1,...,N .

Since we are interested in the average case, we have to calculate mean values over
several runs. Each run ¢t = 1,2,...,T consists of the following four steps:

1. randomly generate a problem instance P® = (E, F,w®)
2. calculate the solution pairs {Sét), Sg(f)}, {Sét), Sg)}, e {S(gt), Séfg}
3. randomly generate an instance of perturbed weights @®

4. evaluate the solution pairs with respect to @
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Then the average rates ., over the whole set of instances are

LS min (@9(S57), a0 (SL))
T ~ t
%Zt:l w(t)(Sé ))

Pe; 1= fori=1,...,N.

The following figures show typical results of the computer experiments. For
every tested combination of the model parameters we made 7" = 10 independent
runs. Beside the optimal solution Sy we computed N = 30 alternative solutions
SeyySeyy oy Seyy, With €1 = 0.025, 9 = 0.050, ..., e30 = 0.750.

For the shortest path problem, results for different perturbation widths ¢ and a
fixed perturbation probability p are shown. Vice versa, for the assignment problem
results for a fixed width ¢ and different probabilities p are shown. All results are
for problem size n = 25. Figures for other problem sizes look very similar.

Figures 3.1/ and 3.2/ show that ¢. first decreases then increases for growing
e. In our experiments (T = 10° simulation runs for each combination of p €
{0.01,0.10,0.25,1.00} and ¢ € {4,8,16,32}) there always existed an ¢* such that

@612¢822“‘2@8i*S"'SSEEN' (31)

The appropriate globally optimal penalty parameter (which must be near e, if
(3.1) holds) is denoted by e,. For simplification, we call &;» the optimal penalty
parameter. Doing this, we are of course aware that neither unimodality nor the
existence of an optimal e, are proved, but are only a conjecture from many exper-
imental runs.
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Figure 3.1: Shortest path problem — Figure 3.2: Assignment problem —
average time rates ¢ for different ¢; average cost rates @, for different ¢;
.
[n=25; T = 10°] [n =25; T = 10°]

Figure 3.1 also shows that larger perturbation widths c result in better rates ..
Figure 3.2 shows average rates for different perturbation probabilities p when c¢ is
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fixed. There seems to be no monotonicity in p. A larger perturbation probability
p does not always mean a better rate ..

Figures 3.3/ and 3.4/ show the relative part of simulation runs in which the
alternative e-penalty solution is strictly better than the original optimal solution
S()l

1
7“€< = T Z 1(Tb<t)(5,§t))<qb(t)(s(()t))).
t=1...T

Figures 3.5 and 3.6/ show the relative part of simulation runs in which the alterna-
tive e-penalty solution and the original optimal solution Sy are equally good:

_ 1
ro o= T 1(1*0“)(5?)):@(”(5((;))) .
t=1...T
1,00 1,00
0,80 0,80
0,60 —B8-p=0.1; c=4 0,60 - —8-p=0.01; c=8
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—A—p=0.1; c=16
% p=0.1; c=32

~A—p=0.25; c=8
% p=1.00; c=8
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€
Figure 3.3: Shortest path problem — Figure 3.4: Assignment problem —
relative part of simulation runs r= with relative part of simulation runs rS with
W(S:) < @(Sp); [n = 25; T = 10] w(Se) < W(So); [n = 25; T = 10
1,00 1,00
0,80 0,80
0,60 —&-p=0.1; c=4 —B&-p=0.01; c=8
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~%p=0.1; c=32

——p=0.10; c=8
—A—p=0.25; c=8
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Figure 3.5: Shortest path problem — Figure 3.6: Assignment problem —
relative part of simulation runs = with relative part of simulation runs r> with
W(S.) = w(Sp); [n = 25; T = 10] w(Se) = W(So); [n = 25; T = 10
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With very small values for the penalty parameter ¢, the penalty method often
generates the original optimal solution Sy itself. Then the e-penalty alternative S.
and the original optimal solution Sy obviously have the same value (see Figures 3.5
and [3.6)). In the remaining cases both solutions are very similar, so the probability
that the e-penalty alternative is better is still small (see Figures3.3 and 3.4). With
increasing ¢ the diversity of Sy and S. increases. The number of runs = in which
the alternative is better than Sy increases, too. But with increasing e the value
of the alternative S, with respect to the original weight w gets worse. Since the
edge-weight perturbation w — @ is edge-independent, this is true on average also
for w. Therefore, when e continues to increase, the number of runs r= in which
the alternative is better decreases again.

For the shortest path problem with perturbation probability p = 0.1 and width
¢ = 32 the perturbations cause the alternative S. to be at least equally good in
more than 40% of the simulation runs. For the assignment problem with p = 0.01
and ¢ = 8, this happens only in about 10% of the simulation runs.

For both optimization problems tested we made qualitatively the same observa-
tions:

e [t is significantly advantageous to have two candidate solutions instead of
having only the optimal solution of the idealized original problem.

e In our experiments there always existed an optimal intermediate penalty
parameter ¢, where the benefit of using the penalty method became maximal.

The results show that the observations made by Schwarz (see [Sch 2003]) for a
fixed perturbation probability p = 1 remain true for arbitrary perturbation proba-
bilities 0 < p < 1. Beyond this, we observed that the rates ¢. are not monotone in
p, instead they seem to be unimodal (see Figure 3.2)). So the advantage of having
two candidate solutions is highest if not too few and not too many parameters of
a problem are perturbed. In the following subsection we present more detailed
results on e,(p, ¢, n).

3.3.1.2 The Optimal Penalty Parameter ¢,

We repeat the experiments for larger sets of simulation parameters p and ¢, but
this time we present only the optimal penalty parameter €, and the corresponding
average rate ¢,  of the optimal solution pair.

Dependence of e, on Perturbation Probability p and Width ¢
We made T = 10° runs for each combination of ¢ € {4,8,16,32,64} and
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p € {0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.00} for n = 25. Together with
the optimal solution Sy for each problem we computed N = 100 alternative solu-
tions Sg,, Seyy - oy Oeqgos fOr €1 = 0.025,69 = 0.05, ..., 100 = 2.50.

Figures 3.7 and [3.8 show the dependence of ¢, on the perturbation probability
p for different values of c.
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1,40 1,40
1,20 1,20
1,00 —+H-c=4 1,00 —H-c=4
—o—c=8 —o—c=8
0,80 A c=16 080 | t—+ n A c=16
—+—¢=32 =+ ——c=32
0,60 c=64 0,60 N c=64
040 | +—4+—F % 0,40 & X ;
A—A—AEE”"”A”"”K S e
0,20 — A : 0,20 ¢ B—f—
0,00 0,00
0,01 0,02 0,04 0,08 0,16 032 0,64 1 0,01 0,02 004 008 016 0,32 0,64 1
P P
Figure 3.7: Shortest path problem — Figure 3.8: Assignment problem —
the optimal penalty parameters e,(p, ¢); the optimal penalty parameters e, (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.5}; [n = 25; I. = {0.025,0.05,...,2.5};
T = 107] T = 10%]

Schwarz already observed for the shortest path problem that the optimal penalty
parameter ¢, is weakly monotonically increasing in the perturbation width c. This
remains true for all tested values of p. But the larger the fixed perturbation prob-
ability p, the smaller the growth rates of ,(c).

At first sight the optimal penalty parameter €, seems to decrease monotonically
for increasing perturbation probability p. Looking at the data again we observe
that the optimal penalty parameter ¢, is approximately unimodal in p (see Figures
3.7 and [3.8)). It first increases very slightly, then it decreases. The larger the per-
turbation width ¢, the larger are the decrease rates of €,(p) within the decreasing
segment. For small values of ¢ (< 8) the optimal penalty parameter ¢, is almost
constant in p.

The average rates @, (p, ¢) — shown in Figures 3.9 and 3.10 — are monotonically
decreasing in ¢ and unimodal in p. The values of p where the average rates are
minimal are decreasing monotonically in c.
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Figure 3.9: Shortest path problem — Figure 3.10: Assignment problem —
average time rates @._(p,c); average cost rates ¢, (p,¢);
[n = 25; I. = {0.025,0.05,...,2.5}; [n = 25; I. = {0.025,0.05,...,2.5};
T =109 T =10

Dependence of €, on the Problem Size n

We made another 10° runs where we computed solution pairs for the different
problem sizes n € {20, 40, 60,80, 100}.

n
20 40 60 80 100
SP  c.(n) ]0.37 030 020 0.18 0.18
@e.(n) | 0.80 0.86 0.88 0.90 0.91
ASP ¢, (n) | 068 050 040 0.33 0.28
@..(n) | 0.74 081 0.85 0.87 0.89

Table 3.1: The optimal penalty parameters €,(n) and the average time/cost rates @., (n) for
the shortest path problem (SP) and the assignment problem (ASP);
[p=0.1, c=32 L = {0.025,0.05,...,1.5}; T = 10°]

Table 3.1/ shows a decrease of the optimal penalty parameter ¢, for increasing
problem size n. While this decrease happens for both the shortest path and the as-
signment problem, there are quantitative differences. For the assignment problem
the optimal e, are significantly larger.

Table 3.1 also shows that the average rates ¢., (n) increase for growing problem
size n. For the shortest path problem we save on average about 20% for n = 20

and about only 9% for n = 100. For the assignment problem we save on average
about 25% for n = 20 and only about 11% for n = 100.
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3.3.2 The Mutual Penalty Method —
Relative Improvement by e-Penalty Solution Pairs

Here we analyze the case that we are allowed to choose between the two solutions
from an e-penalty solution pair {Si(),S2()} generated with the mutual penalty
method. The original optimal solution Sy is used only as reference.

3.3.2.1 The Influence of the Penalty Parameter &

We repeat the experiments from Subsection 3.3.1 with the mutual penalty method.
Again we calculate mean values over several runs. The average rates ¢! over the
whole set of instances are

T w
G = %thl 1nin (w(t)(s&)ﬁ))’ w(t)(sgé)ai))) fori=1 N
€ T ~ t S |

The following figures show typical results of the computer experiments. We
computed N = 30 solution pairs {Si(c,), Sa(e1) }» {S1(e2), S2(e2) }+ - - - » 151 (e30)5 S2(es0) }
for e;1 = 0.025,e9 = 0.050,...,e30 = 0.750. Since the computation time of the
mutual penalty method is significantly larger in comparison to the penalty method
we could do (only) T = 10* independent runs for every tested combination of the
model parameters.

For the shortest path problem, results for different perturbation widths ¢ and a
fixed perturbation probability p are shown. Vice versa, for the assignment problem
results for a fixed width ¢ and different probabilities p are shown. All results are
for problem size n = 25. Figures for other problem sizes look very similar.

Figures 3.11 and [3.12 show that ¢ first decreases then increases for growing e
as for the case with the penalty method. In all our experiments (7' = 10* simulation
runs for each combination of p € {0.01,0.10,0.25,1.00} and ¢ € {4, 8,16, 32}) there
existed an optimal penalty parameter ;« such that

Goy Z Py 2o 2P S S Pl

With the mutual penalty method the average rate ¢ can be larger than 1.
So, if the penalty parameter € is badly chosen the possibility to choose from two
candidate solutions is worthless on average. It is even worse than the reference
case where we have only the original optimal solution Sj.
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Figure 3.11: Shortest path problem — Figure 3.12: Assignment problem —
average time rates @7 for different ¢; average cost rates ¢! for different ¢;
[n=25;T= 104] [n=25;T= 104}

Figures [3.13 and [3.14 show the relative part of simulation runs r= where (at
least) one of the solutions of the e-penalty pair {Si(), S} is better than the
original optimal solution Sp:

1
7°6< Z:T 1

e (min(BO(S0) 8 (S0 ) <8 (S)))

(

In all cases the frequency r= first increases and then decreases with increasing
penalty parameter . For many penalty parameters ¢ the frequency of an improve-
ment r= is significantly smaller than 1/2. Nevertheless the according average rates
@ are smaller than 1.
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Figure 3.13: Shortest path problem — Figure 3.14: Assignment problem —
relative part of simulation runs 7 with relative part of simulation runs S with
min(@(S1(c) ), W(Sa(e))) < w(So); min(@(S1(e) ), W(Sa(e))) < W(So);
[n=25; T = 10 [n=25; T = 10
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This results from a large relative part of simulation runs

1
e =7 Z 1<min(do<t>(s§2)),do<t><s;§’5>>>:do<t><sé“>>
t=1...T

where the better solution from the pair {Sj(), Sz} has the same value as the
original optimal solution Sy (see Figures 3.15 and 3.16). Further analysis showed
that in nearly all of these cases the solutions have not only the same value but are
indeed identical.
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Figure 3.15: Shortest path problem — Figure 3.16: Assignment problem —
relative part of simulation runs = with relative part of simulation runs r> with
min(@(S1(0)). D(Sae))) = B(S0): min(D(S10)). D(Sae))) = B(S0):

[n =25; T =10 [n = 25; T = 10%]

3.3.2.2 The Optimal Penalty Parameter &

Again we have a closer look at the optimal penalty parameter €7 and the corre-
sponding average rate @7 of the optimal solution pair.

Dependence of €7' on the Perturbation Probability p and the Width ¢

We made T' = 10* runs for each combination of p € {0.01, 0.02, 0.04, 0.08, 0.16,
0.32, 0.64, 1.00} and c € {4, 8, 16, 32, 64} for n = 25. Together with the optimal
solution Sy for each problem we computed N = 100 solution pairs {Si(,), Sa¢1)}
{51(52), 52(52)}, ey {51(8100), 52(8100)} for g1 = 0.025, Eg9 = 0.05, ...,&100 — 2.50.

Figures 3.17 and [3.18 show the dependence of € on the perturbation proba-
bility p for different values of c.

We were not able to do as much simulation runs 7" as with the penalty method.
So the experimentally observed average optimal penalty parameters €7* do not look
as smooth. Furthermore, the number of runs 7' necessary to get smooth looking
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Figure 3.17: Shortest path problem —

the optimal penalty parameters 7 (p, ¢);

[n = 25; I. = {0.025,0.05,...,2.5};
T =10
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Figure 3.18: Assignment problem —

the optimal penalty parameters €7 (p, ¢).

[n = 25; I. = {0.025,0.05,...,2.5};
T =104

results depends on the simulation parameters p and c. Obviously the larger the
perturbation width ¢, the larger the variation of the results. If we also decrease
the perturbation probability p, the variation increases again. So the results shown
in Figures 3.17 and [3.18 for very small values of p and large ¢ are not as smooth
as for larger p and smaller c.

Anyhow we can see that the dependencies are qualitatively quite similar to the
case with the penalty method (see Figures 3.7 and [3.8). The optimal penalty pa-
rameter €7 seems to be weakly monotonically increasing in the perturbation width
¢ and unimodal in p. It first increases slightly then it decreases with increasing p.
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Figure 3.19: Shortest path problem —
average time rates @7 (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.5};
T =104
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Figure 3.20: Assignment problem —
average cost rates @I (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.5};
T =10%

The observed average rates @7 (p, c) for different parameters p and ¢ (see Figures
3.19/and [3.20) are nearly identical to those observed with the penalty method (see
Figures 3.9/ and [3.10)). There are no significant differences.
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Dependence of €7' on the Problem Size n

We made another 10* runs where we computed solution pairs for the different
problem sizes n € {10, 15,20, 25,30}.

Table 3.2 shows that the optimal penalty parameter €7* decreases for increasing
problem size n. It also shows that the average rates ¢ (n) increase for growing
problem size n. We were not able to analyze the same set of problem sizes n as for
the penalty method. But probably we would not get results that are very different
in comparison to those observed with the penalty method.

n
10 15 20 25 30
SP  er(n) |0.68 053 038 028 0.35
g (n) | 0.73 077 0.80 082 0.83
ASP er(n) [ 090 088 055 0.55 0.53
gr(n)| 066 071 074 0.76 0.78

Table 3.2: The optimal penalty parameters €'(n) and the average time/cost rates @7 (n) for
the shortest path problem (SP) and the assignment problem (ASP);
[p=0.1, c = 32; I. = {0.025,0.05,...,1.5}; T = 10"]

3.3.3 Concluding Comparison

In all our experiments it turned out that it is clearly advantageous to have two
different solutions to choose from. In the case of seldom but severe perturbations
the benefits are most impressive.

But these benefits get only realized if a good penalty parameter ¢ is chosen. In
our experiments there always existed an optimal intermediate penalty parameter
™ for which the benefit was maximal. The more the penalty parameter in use
differed from the optimal penalty parameter the worse the average results were.
Unfortunately (in view of practice), the optimal penalty parameter elm depends
on the problem, the problem size n and the simulation parameters p and c¢. The
following rules of thumb give a general idea of the dependencies: The optimal

penalty parameter elm
e monotonically increases in the perturbation width c.

e first increases slightly then decreases in the perturbation probability p.
For small perturbation widths ¢ the penalty parameter €, is nearly constant

in p.

e monotonically decreases in the problem size n.
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Experiments 3.3 Results of the Experiments with Exact Algorithms

Whereas the qualitative dependencies of the optimal penalty parameter are equal
for the normal and the mutual penalty method, they differ a bit quantitatively. For
the mutual approach the optimal penalty parameter €7* tends to be a bit smaller
than e,.

In the experiments so far the mutual penalty method gains no extra benefit
in comparison to the normal penalty method. At first sight both approaches are
quite different. But the experimental results are very similar. Figures/3.21land[3.22
show that the generated solution pairs of both methods ({So, S} and {Si(.), Sa(e)})
are not as different as supposed, at least not for our class of randomly generated
problems with uniformly distributed data. The weighted common part

~ (t) (t)
v - ZT: w(t)(sl(a) N S)
S 575 5 T ~
POROTT T S a0 sy

of the solutions of the e-penalty pair gets really small for larger penalty parameters
€. But the maximal common part

maz 1 G omax(@0(Sg” N Sy, @ (S5) 1 SY)
(S0 {S10) 5201 T T ; o™ (SP)

of one of the solutions {S)(), Sa)} with the original optimal solution Sy stays
relatively high at about 80%. This means that very often one of the solutions from
the e-penalty pair is similar to the original optimal solution.
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Figure 3.21: Shortest path problem — Figure 3.22: Assignment problem —
common parts of the solutions; common parts of the solutions;
[n = 25; T = 10%] [n = 25; T = 10%]
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Furthermore, it is not clear whether the observations we made so far depend
on the (p;1,c)-perturbation model we used. Another perturbation model — for
example with perturbations that are not independent of the edges — could change
the observations. At this point we skip this question and postpone it to a later
section where we test some other perturbation models (see 4.2).

3.3.4 Penalty Method vs. k-th Best Approach for Shortest
Paths

Using a 2-best algorithm is probably the most intuitive way to get a pair of solu-
tions. One simply calculates the best and the 2nd-best solution. We repeat the
experiment for the shortest path problem using this approach. Together with the
optimal solution Sy we compute the next best solution S;. Then we calculate the
w-length of the optimal solution Sy and the minimum of the w-lengths of the pair
{So, S1}. We make this for T rounds and calculate the average rate @,.

LS min (@0(S$), a0 (S))
LS @S

Figure 3.23 shows the average time rates @s(p, c) of the 2-best approach. Figure
3.24 shows again the average time rates @, (p,c) using the penalty method with
the optimal penalty parameter e,(p, c).
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0,65 0,65
0,01 0,02 0,04 0,08 0,16 0,32 0,64 1 0,01 0,02 0,04 0,08 0,16 0,32 0,64 1
p P
Figure 3.23: 2-best approach — Figure 3.24: Penalty method —
average time rates @o(p, ¢); average time rates ¢, (p, ¢);
5
[n=25; T = 10°] [n =25; T = 10°]

In general, the best and the 2nd best solution will be very similar to each other,
differing only in very few details. So the average rates we see in Figure 3.23 are
quite bad in comparison to the ones of the penalty method shown in Figure [3.24.
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We generalize this approach by using the k-th best solution Sy_; instead of
the 2nd best solution S; as the second part of a solution pair. We choose a k
and get the pair {Sp, Sk_1}. We make another experiment to see which & to
choose. Together with the optimal solution S; we compute all next best solu-
tions S1,Ss,...,Sy_1. Then we calculate the minima of the w-lengths of all the
pairs {So, S1}, {S0, 2}, -+, {S0, Sv_1}. We make this for 7" runs and calculate the
average rates @ for k=2.,3,... N.

T . ~ )y o~ t
LS min (@0(S$), 0 (S))
T ~ t
%Zt:l w(t)(Sé ))

Figure [3.25 shows the results of 7' = 10° runs for problem size n = 25. The rates
P seem to be nearly constant in k up to very large values of k.

Pk =

We repeated the experiment for a smaller problem size n = 8. Starting with
the 2nd best solution, the average rates ¢, of the solution pairs of the k-th best
approach seem to get smaller for growing k up to some k.. From there onwards
@) increases again (see Figure 13.26). It is also possible that k., is equal to 2, then
the decreasing part is empty.
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Figure 3.25: k-th best approach — Figure 3.26: k-th best approach —
average time rates @r; [n = 25; T = 10°] average time rates @y; [n = 8; T = 10°]

We are interested in the index k, with the smallest average rate ¢, < ¢y for all
k # k.. This index seems to be very large for some combinations of the simulation
parameters and the problem size. As an example we tested problem size n = 10
with perturbation probability p = 0.01 and perturbation width ¢ = 256. The op-
timal index k, for this setting was about 32000. So we have chosen a rather small
problem size n = 8 to be able to calculate all possible paths up to the maximal £ =
3431 within acceptable time. We made T = 10° runs for each combination of the
real-world simulation parameters p € {0.01,0.02,0.04,0.08,0.16,0.32,0.64, 1.00}
and ¢ € {4,8,16,32,64}.
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Figure 3.27 shows the optimal index k.(p,c) of the k-th best approach and
Figure 3.28 shows the optimal penalty parameter e,(p, ¢) of the penalty method.
The dependencies of k. (p, c) on the perturbation probability p and the perturba-
tion width ¢ are qualitatively identical to those of the optimal penalty parameter
£«(p, ). The optimal index k, gets large for small values of p and large values of c.

1000

800

3,00

2,50

2,00

600 H-c=4 5-c=4
—o—c=8 —o-c=8
—A-c=16 1,50 —A-c=16
——c=32 " —+—c=32
400
c=64 — X c=64

P

1,00

0,50

0,00

*
A p X

[€;
=, =} =} =} =)

001 002 004 008 016 032 0,64 1
p

Figure 3.28: Penalty method —
the optimal penalty parameters e, (p, ¢);
[n =8 I = {0.05,0.10,...,10}; T = 10°]

Figure 3.27: k-th best approach —
the optimal indices k. (p, ¢);
[n=8; I, ={1,3,5,...,3431}; T = 10°]

Figures 3.29 and 3.30 show the average rates ¢ of the solution pairs. We see
that those of the penalty method are significantly better than those of the k-th

best approach. This is true for all tested parameter settings.
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Figure 3.30: Penalty method —
average time rates @, (p, ¢);
[n =8; I. = {0.05,0.10,...,10}; T = 10°]

Figure 3.29: k-th best approach —
average time rates @y, (p, ¢);
[n=8; I, =1{1,3,5,...,3431}; T = 10°]

We made another series of runs where we computed solution pairs for different
problem sizes n € {10,15,20,25,30}. Whereas the optimal penalty parameter
decreases for growing problem size n, the optimal k, increases rapidly (see Table
3.3). The penalty parameter does not affect the running time of an algorithm
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that uses the penalty method to generate an alternative. But obviously a k-best
algorithm needs more time to calculate the k-th best solution for larger k.

Table 3.3 also shows the average rates ¢ of the solution pairs for growing
problem size n. Again those of the penalty method are significantly better than
those of the k-th best approach.

n
10 15 20 25 30

k-th best approach k.(n) | 490 3780 16920 29820 38820
ok (n) 1 0.82 0.85 0.87 0.89 0.90

penalty method  e,(n) |0.65 0.55 0.40 0.35 0.30
5..(n) |0.72 077 0.80 0.82 0.83

Table 3.3: The optimal indices k. (n) and the average time rates @y, (n); and the optimal
penalty parameters e, (n) and the average time rates @., (n) for the shortest path problem;
[p=0.1,c=32 I = {9,19,...,39999}: I. = {0.05,0.10,...,5.00}; T = 10°]

In Figures 3.25 and [3.26/ we have seen that the average rates ¢y of the k-th best
approach solution pairs {Sy, Sy} decrease very slow with growing k, even more so
for larger problem sizes. Maybe the benefit of the solution pair {Sy, Sk, } with a
very large k, is not really much bigger than the benefit of a pair with a smaller
value of k. So we made another 7 = 10° runs for problem size n = 25. This
time we generated only the 50-th best path and calculated the average rate ps5q of
the solution pair {5y, Syo}. Figure 3.31 shows the results of this experiment. The
average rates pso are significantly worse than the average rates ¢., of the penalty
method (see Figure 3.24). Raising the fixed index k of the second solution of the
pair to k£ = 500 does not improve the results notably (see Figure [3.32).
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Figure 3.31: 50-th best approach —
average time rates @so(p, ¢);
[n = 25; T = 10°]

Figure 3.32: 500-th best approach —
average time rates @s00(p, ¢);
[n=25; T = 107]
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The fact that the index k for generating a true alternative with a k-best algo-
rithm is extremely large for a normal problem size makes the k-th-best approach
inefficient in comparison to the penalty method. As we saw in Figure 3.29, even
using the k-th best approach with the average optimal index k, is qualitatively
worse than using the penalty method.

3.4 Results of the Experiments with Heuristics

As in Section 3.3l we start with an optimization problem P = (F, F,w) and are
allowed to provide two different solutions. Then we learn about the simulated real-
world data @ and can choose the solution that has the better value with respect
to w from our pair. Assume we are given a problem which we are not able to solve
exactly within a given time, but we are able to solve the problem heuristically.
We check whether it is advantageous within the model of perturbed data to use
penalty methods to prepare alternative solutions with a heuristic.

Another intuitive way to generate a pair of solutions is to run a randomized
heuristic twice. In general, this leads to two different, heuristic solutions.

First we want to have an idea of the ratio of the minimal value of two indepen-
dent, locally optimal solutions to the value of one locally optimal solution. Let .Sj,
and S, be two local optima. Then we are interested in the quotient:

05, 5. = T2z min (@BO(S), 80(5,)))
liyPly) = - :
%Zle w(t)(sl(lt))

Tables 3.4l and 3.5/ show @ for T = 10° runs for the traveling salesman problem
and the assignment problem. In both cases we used problem size n = 25 and
different combinations of the parameters p and c. (The quotas Q strongly depend
on the heuristics used (see Appendix A.2).)

Q c=2 | c=8 | ¢=32 | c=128 Q c=2 | c=8 | ¢=32 | c=128
p=0.01 | 0.96 | 0.96 | 0.94 | 0.92 p=0.01 [ 0.94 | 0.93 | 0.90 0.87
p=0.10 | 0.96 | 0.92 | 0.86 | 0.81 p=0.10 | 0.94 | 0.90 | 0.82 | 0.75
p=0.25 | 0.96 | 0.91 | 0.86 0.84 p=0.25 | 0.93 | 0.88 | 0.83 0.80
p=1.00 | 0.96 | 0.94 | 0.94 | 0.94 p=1.00 | 0.93 | 0.92 | 0.91 0.91

Table 3.4: Traveling salesman problem — Table 3.5: Assignment problem —

[n = 25; T = 10°] [n = 25; T = 10°]
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Obviously the minimal value of two independent locally optimal solutions is on
average significantly smaller than the value of only one locally optimal solution.
So we examine whether a pair of solutions generated with the penalty method is
on average even better than a pair of two independently generated solutions.

3.4.1 The Penalty Method — Relative Improvement
by an Additional Heuristic e-Penalty Alternative

Here we focus on the case that we have a heuristic e-penalty solution S. additionally
to a locally optimal solution Sj;. We analyze the average relative improvement by
alternative heuristic e-penalty solutions with respect to the penalty

parameter €.

3.4.1.1 The Influence of the Penalty Parameter ¢

In the following experiments we calculate beside a locally optimal solution S, a set
of heuristic e-penalty solutions S.,, S-., ..., S- v for different parameters 1, €, ..., 6N
and another independently generated locally optimal solution 512- We get N so-
lution pairs {S;,, S, }, {Si,, S}, ..., {5, S-x} and calculate the minima of the
function values of the computed pairs of solutions with respect to the simulated
real-world problem:

min (@(Sy, ), w(S.,)) fori=1,...,N and min (@(Sy, ), W(Sy,))

Again we calculate mean values over different problem instances and different
instances of perturbed weights. Let T" be the number of tests for a given parameter
set. The average performance rates y., are:

Xé‘i =

The following figures show some of the results of the computer experiments.
More figures are shown in Appendix B.2.1. We made T' = 10° runs for each combi-
nation of the simulation parameters p € {0.01,0.1,0.25,1.00}, ¢ = 8 and p = 0.1,
c € {4,8,16,32}. We computed N = 30 alternative solutions Sel, SEQ, cee 5530 with
g1 = 0.025,e9 = 0.050,...,e30 = 0.750. Again we always set n = 25.

As in the case with exact algorithms, Figures 3.33 and 3.34 show that the
average rates Y. first decrease and then increase for growing ¢ such that

X£12X522"‘Z)ZE¢* S S Xew -

So this time there always existed an optimal penalty parameter e, := ¢;,, too.
Since we compare the minimal value of the solution pairs {5}, S¢, } to the minimal
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value of two independently generated locally optimal solutions, the ratios y. can
now exceed 1. That means that generating a solution pair with the penalty method
(for a badly chosen penalty parameter £) may be worse on average than generating
two independent, locally optimal solutions. But for all settings we tested, the rate
Xe. for the optimal penalty parameter ¢, was better (i.e. smaller) than 1.
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The larger the penalty parameter ¢, the worse (on average) the value of the
heuristic e-penalty solution S and the smaller the relative part of simulation runs

1
< . __
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in which the heuristic e-penalty solution S. is best (see Figures 3.35 and [3.36).

3.4.1.2 The Optimal Penalty Parameter ¢,

Here we present the results of the experiments for the dependence on the prob-
lem size n and the simulation parameters p and c. This time we present only
the optimal penalty parameter ¢, and the according rates Y.,. For the experi-
ments we used the same parameter sets as for the case of exact algorithms (p €
{0.01,0.02,0.04,0.08,0.16,0.32,0.64,1.00} and ¢ € {4,8,16,32,64} for n = 25)
but made 10° runs each (instead of 10°).

Dependence of €, on the Perturbation Width ¢ and the Perturbation
Probability p

Exactly as for the case of exact algorithms, the optimal penalty parameter ¢, is
monotonically increasing in the perturbation width ¢ (see Figures 3.37 and 3.38).
The larger the fixed perturbation probability p, the smaller the growth rates of
g«(c). For p = 1 the penalty parameter ¢, is nearly constant in ¢. For the de-
pendence on the perturbation probability p we observe that the optimal penalty
parameter ¢, is approximately unimodal in p as for the exact case. It first increases
slightly, then it decreases. The larger the perturbation width ¢, the larger the de-
crease rates of £,(p) (within the decreasing segment). For small values of ¢ (< 8)
the optimal penalty parameter ¢, is almost constant in p.
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Figure 3.37: Traveling salesman problem — Figure 3.38: Assignment problem —
the optimal penalty parameters e,(p, ¢); the optimal penalty parameters e, (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.5}; [n = 25; I. = {0.025,0.05,...,2.5};
T =109 T =10

The qualitative behavior of the rates y.- is also similar to the exact case (see
Figures3.39 and [3.40)). The values are monotonically decreasing in ¢ and unimodal
in p. The values of p where the rates y., are minimal are monotonically increasing
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in ¢. The only significant difference between the exact and the heuristic case is the
size of the rates ¢., and y.,. Since we used a different scale for the rates for the
exact and the heuristic case, we can not compare these values directly.
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Figure 3.39: Traveling salesman problem —
average time rates e, (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.5};
T = 109

Figure 3.40: Assignment problem —
average cost rates Ye, (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.5};
T =109

Dependence of ¢, on the Problem Size n

For the dependence on the problem size n we made another 10° runs where we
computed solution pairs for the different problem sizes n € {20, 40, 60,80, 100}.
Table 3.6 shows the decrease of the optimal penalty parameter e, for growing
problem size n.

n
20 40 60 80 100

TSP e.(n) 053 035 025 025 0.20

Xe.(n) | 0.903 0.958 0.975 0.983 0.987

ASP  e.(n) 0.68 043 042 038 0.38

Xe.(n) 1 0.960 0.989 0.994 0.996 0.997

Table 3.6: The optimal penalty parameters €,(n) and the average time/cost rates X, (n) for
the traveling salesman problem (TSP) and the assignment problem (ASP);
[p=0.1, c = 32; I. = {0.025,0.05,...,1.5}; T = 109]

And we see again that the rates x., (n) increase for growing problem size n. But
for all tested values of n the penalty method with the 'right’ penalty parameter e,
leads on average to better results than taking a pair of two independently generated
locally optimal solutions. However the benefit is rather small for larger problem
sizes n.
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3.4.2 The Mutual Penalty Method — Relative
Improvement by Heuristic e-Penalty Solution Pairs

Here we analyze the case that we are allowed to choose between the two solutions
from a heuristic e-penalty solution pair {91(5), 52(8)} generated with the mutual
penalty method. A pair of independently generated, locally optimal solutions
{511, Slg} is used as reference.

3.4.2.1 The Influence of the Penalty Parameter ¢

We repeat the experiments from Subsection 3.4.1 with the mutual penalty method.
Again we calculate mean values over several runs. The average rates \7 over the
whole set of instances are

T . -~ > -~ S
= %thl min (w(t)(Sﬁ)Ei))7 w(t)(Sé?Ei) fori=1 N
T LT min (@S], a0(S))

om

The following figures show typical results of the computer experiments. For
every tested combination of the model parameters we made T = 10° indepen-
dent runs. We computed N = 30 solution pairs for the penalty parameters
g1 = 0.025,e9 = 0.050, . ..,e30 = 0.750.

Again Figures 3.41 and 3.42/ show the expected qualitative behavior. The av-
erage rates X7 are unimodal in €. First they decrease, then they increase again.
And again there exists for every tested combination of perturbation parameters p
and ¢ an optimal penalty parameter €* such that the corresponding average rate
X2 is minimal and smaller than 1.
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3.4.2.2 The Optimal Penalty Parameter &

The results of focusing the view on the optimal penalty parameter €7'(p, ¢,n) and
the average rate ' (p, c,n) are shown in Figures [3.43| to 3.46/ and Table [3.7. The
qualitative behavior is identical to the case with the penalty method in Subsection

3.4.1.2.
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the optimal penalty parameters 7 (p, ¢);

[n = 25; I. = {0.025,0.05,...,2.5};
T =109

1,00
0,97
0,94 B-c=4
—o-c=8
. “A-c=16 X « “A-c=16
0,91 i . c=32 094 v e
v —¢—c=64 ' c=64
X
0,88 o 0,92
X
0,85 0,90
001 002 004 008 016 032 064 1 001 002 004 008 016 032 064 1

P

Figure 3.45: Traveling salesman problem —
average time rates X" (p, c);
[n = 25; I. = {0.025,0.05,...,2.5}:
T = 109]

p

Figure 3.46: Assignment problem —

o1

average cost rates X (p, ¢);
[n = 25; I. = {0.025,0.05,. ..,2.5};
T = 109]




Experiments 3.5 Stability and Variation of the Results

n
20 40 60 80 100

TSP er(n) | 053 035 025 0.25 0.20

*

X2 (n) | 0.903 0.959 0.976 0.983 0.987
ASP er*(n) | 053 035 033 0.35 0.40

*

X2 (n) | 0.954 0.985 0.992 0.994 0.995

Table 3.7: The optimal penalty parameters €}'(n) and the average time/cost rates x7 (n) for
the traveling salesman problem (TSP) and the assignment problem (ASP);
[p=0.1, c=32; I. = {0.025,0.05,...,1.5}; T = 10]

3.4.3 Concluding Comparison

In all of our experiments with the heuristic approaches it is advantageous to
choose from two solutions generated with a penalty method. The average rates
)ng) were not as impressing as in the case with exact algorithms. But if the 'right’
penalty parameter ¢ is chosen, the heuristic penalty methods lead on average to
better results than simply taking a pair of two independently generated, locally

optimal solutions.

The optimal choice of the penalty parameter ¢ again depends on the problem,
the problem size n and the simulation parameters p and c¢. The dependencies are
identical to the case with exact algorithms (see [3.3.3).

Also as in the case with exact algorithms, the mutual approach did not show
significant advantage compared to the normal penalty approach.

3.5 Stability and Variation of the Results

We conclude the experimental investigation with a brief statistical analysis of our
simulation results. We will show that the average rates ¢. (or y. and y with
heuristics) differ from the actual expected values by less than 1% with probabil-
ity 98% (see [Ros 2002]). For the mutual penalty method with exact algorithms,
where we did only 7' = 10* simulation runs, we can guarantee only maximal errors
of less than 3% (with probability 98%).

Let X' with t = 1,..., 7T beii.d. random variables with expected value E[X"],
variance 0%, = Var(X") and sample mean X = ST XTt To determine the
quality of X as an estimator of E[X'], we consider its mean square error, the
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expected value of the squared difference between X and E[X?]:

B[(X - E[X"))?) = Var(X) = Var( Z X) = Z Var(X!) = ";t .

(since E[)_;]': E[X?)

Thus, X, the sample mean of the 7' data values X', ... , X T is a random variable
with mean E[X'] and variance o%;/T. It follows that X is a good estimator of
E[X'] when its standard deviation og = ox¢/v/T is small.

With a large T" we can apply the central limit theorem to assert that
X — E[XY]
Oxt /\/T

is approximately distributed like a standard normal random variable Z. Thus we
have

_ ox
P{IX - EIX')| > <22 ~ P{1Z] > ¢} = 2[1 - (c)]
| (X Nii {I2] > ¢} =2| ()]
with @ being the standard normal distribution function. Since the variance 0% is
not known, we can not use the value o%,/T directly as an indication of how well
the sample mean of T" data values estimates the expected value. Therefore, we also
need to estimate the variance

s e = (XX (T (X)) —T(X?)
O'XtNSXt.—Z T—]_ = T—l .

t=1

Now we are ready to evaluate our results statistically. For the penalty method
with an exact algorithm let

Xt = min (@ (557), (5L}
and Y':=a® (S with t=1,...,T.
From $(2.33) = 0.9901 it follows that
P{|X. — E[X!]] <233 sx¢/VT} ~ 0.98
and  P{|Y — E[Y!]| < 2.33-sy:/VT} ~ 0.98 .
With ¢. = X./Y and ¢. = E[X!]/E[Y] it follows that
P{p. — 67 < p. < ¢+ 67} ~ 0.98
with the maximal deviations

X, — 233 sx/VT

~ and §F =
Y +2.33 - sy /T

L X, +233-sx:/VT
55 = Pe — }—/ = -

—2.33 - sy /T
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Since 0F > 0 and § > 0 and

(5+ 5 — . 2- (2.33)28yt<}78)(§ + XSYt) S
S T Y (YR — (233 5y1)2) ’

we know that
P{lpe — @:| < 67} > P{@g. — 67 < p. < @+ 67} = 0.98.

So we can restrict our analysis to the maximal deviations J. := ¢ towards the top.

Figures 3.47 and 3.48 show with 98% certainty the maximal deviations 0. of
the average rates . shown in Figures 3.1 and 3.2l For small values of € the 4.
slightly decrease in €. For larger € they are nearly constant in €.
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0,008 0,008

0,006 —=-p=0.1; c=4 0,006 —£-p=0.01; c=8
——p=0.1; c=8 ——p=0.10; c=8

—A—p=0.1; c=16
p=0.1; c=32 0,004 FCLAAA:

—A—p=0.25; c=8
p=1.00; c=8

0,004

PN
BAAAAANALA

0,002 0,002
B e e e ]

0000 Lo i e 0000 Lttt
N O W o W o nw O wo w o v o wn n O W o w o wowOoLuwmOoLwnw o wn
O d d NAN®M®MIT Y WO o~ M~ © " dNN®M®MYI I 1IN O O~ N~
O O O 0O 0O O O O O O o o o o o O O O 0O 0O O O O o o o o o o o

€ €

Figure 3.47: Shortest path problem —
98% certain maximal errors J, of the
average rates ¢, shown in Figure 3.1}

[n = 25; T = 10°]

Figure 3.48: Assignment problem —
98% certain maximal errors d, of the
average rates ¢. shown in Figure [3.2}
[n = 25; T = 10°]

Furthermore, the deviations d, increase in ¢, are unimodal in p and decrease
in the problem size n. So the maximal deviations J. are approximately largest for
these parameter combinations of p and ¢ that result in small average rates @..

Figures 3.49 and [3.50) show the maximal deviations d., (p, ¢) for the optimal av-
erage rates @, (p, c) (see Figures3.9 and 13.10) shown in Subsection [3.3.1.2. Again,
the maximal deviations d., (p, ¢) are significantly smaller than 1% for each tested
combination of the simulation parameters p and c.
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0,010 0,010
0,008 0,008
0,006 —B-c=4 0,006 - + N O-c=4
—©—c=8 + —©—-c=8
—A—c=16 A—B + —A—c=16
S —+ ——c=32 + B —+—c=32
0,004 * © 0,004 &
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001 002 004 008 016 032 064 1 001 002 004 008 016 032 064 1
P P
Figure 3.49: Shortest path problem — Figure 3.50: Assignment problem —
98% certain maximal error J., (p, c). 98% certain maximal error d., (p, c).

For the other methods tested we have to redefine X! and Y* appropriately, but
then we can continue the calculation in the same way.

1.) mutual penalty method X! := min (@(t)(SY()E)),@(t)(Sé?a))) — 0
with exact algorithms Y= @(t)(Sét))

2.)  penalty method X! = min (@%(
with heuristics Yt : = min (0®( ll)),fﬁ(t)(Sl(Qt)))

3.) mutual penalty method X; : = min (@(t)(sﬁi)%@(t)(gé?g))) — o
with heuristics Y?: = min (@(t)(sl(f)),@(t)(gz(zt) )

Table 3.8 gives an overall view of the largest maximal errors §. we observed in all
the experiments. In each cell it shows the largest value d. we observed for all tested
parameters €, p, ¢, n in the specific experiment. The complete statistical results of
the single experiments are given in Appendix B.

We can conclude that the presented simulation results for the penalty method
with exact algorithms are sufficiently accurate. We can be 98% certain that all
presented average rates @, differ from the exact expected values . by less than 1%
(see [Ros 2002]). For the mutual penalty method we get only £3%. The penalty
methods with heuristics were statistically analyzed in the same way. With 7' = 10°
simulation runs the maximal errors d. and 5;” are significantly smaller than 1%.
Therefore, the significance of the results is just as high.
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Subsection [3.3.1 T | 6:[p:]  0c]@-(pyc)] Oc.[pe.(n)]
penalty method SP | 10° | 0.0055 0.0059 0.0083
with exact algorithms ASP | 10° | 0.0081 0.0076 0.0086
Subsection 3.3.2 T | orfer] orler(p.c)] orler(n)]
mutual penalty method SP | 10* | 0.0175 0.0185 0.0270
with exact algorithms ASP | 10* | 0.0256 0.0242 0.0277
Subsection 3.4.1 T | 6% 0-[Xe.(p.©)] e [Xe, (0)]
penalty method TSP | 10° | 0.0022 0.0026 0.0032
with heuristic algorithms ASP | 10° | 0.0024 0.0031 0.0035
Subsection 3.4.2 T | o[y 5;" Xz (p, c)] 5;’1 X2 (n)]
mutual penalty method TSP | 10° | 0.0022 0.0026 0.0032
with heuristic algorithms ASP | 10° | 0.0024 0.0031 0.0035

Table 3.8: The largest 98% certain maximal errors of the experiments from Sections 3.3 - [3.4.
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Chapter 4

Miscellaneous Specializations and
Generalizations

In this chapter we briefly discuss the following additional topics that we did not
take into account so far:

4.1/ Sensitivity of the Optimal Penalty Parameter ¢,

4.2 Other Perturbation Models

4.3 Specific Problem Instances

4.4 The Optimal Solution of the Perturbed Problem

4.5 The Expectation of the Quotient versus the Quotient of the Expectations

4.6 Connection to Multi-Criteria Optimization

4.1 Sensitivity of
the Optimal Penalty Parameter e,

The experiments we reported in Chapter |3 showed that there exists an optimal
penalty parameter ¢, (or £'). We observed that this optimal penalty parameter
depends on the specific situation. There is not one optimal choice for all cases.

However, the Figures 3.1/ and [3.2 from page 30/ and Figures 3.11 and 3.12/ from
page 36 lead to the assumption that for the penalty methods with exact al-
gorithms it is better to overestimate than to underestimate the optimal
penalty parameter if it is unknown. The average rate ¢. (or @) decreases
significantly faster for increasing € < ¢, than it increases again for ¢ > «,.

o7



Miscellaneous 4.1 Sensitivity of the Optimal Penalty Parameter ¢,

Figures 4.1 and 4.2 show the loss of quality

APo1 = Pe 101 — Pe,

by overestimating the optimal penalty parameter €, by 0.1. In all cases the loss is
smaller than 0.003. For the mutual penalty method the upper bound of the loss is
a bit larger, but still small (< 0.006, see Figures B.54' and [B.74' in Appendix B)).

0010 0,010
0,008 0,008
0,006 B-c=4 0,006 S-c=4
—-©—c=8 —©—c=8
—A—c=16 —A—c=16
0,004 e=32 0,004 c=32
' ¢ c=64 ' —%—c=64
0,002 0,002

0,000 0,000

001 002 004 008 016 032 0,64 1 001 002 004 008 016 032 0,64 1

P p
Figure 4.1: Shortest path problem — Figure 4.2: Assignment problem —
loss of quality Agg.1(p,c) by loss of quality Agp.1(p, c) by
overestimating e, (p, ¢) by 0.1; overestimating e, (p, ¢) by 0.1;
[penalty method; n = 25; T = 10°] [penalty method; n = 25; T = 10°]

For the penalty method with heuristics we do not observe that it is better to
overestimate than to underestimate ¢, (see Figures[3.33 and 3.34 from page 47 and
Figures [3.41] and 3.42 from page 50)). Anyhow, the loss of quality

AX01 = Xea+0.1 — Xen

by overestimating the optimal penalty parameter e, by 0.1 is still quite small (see
Figures 4.3 and 4.4)).

0,010 0,010
0,008 0,008
0,006 —B-c=4 0,006 —8rc=4
—©—c=8 —©—c=8
—A—c=16 —A—c=16
—+—c=32 —+—c=32
0.004 —%-c=64 0,004 —%-c=64
0,002 f 0,002 X
+
0,000 0,000 f
0,01 002 004 008 016 032 064 1 0,01 0,02 0,04 0,08 0,16 032 0,64 1
P P
Figure 4.3: Traveling salesman problem — Figure 4.4: Assignment problem —
loss of quality Axo.1(p,c) by loss of quality Axo.1(p,c) by
overestimating £.(p, ¢) by 0.1; [penalty overestimating £, (p, ¢) by 0.1; [penalty
method with heuristics; n = 25; T' = 10°] method with heuristics; n = 25; T' = 10°]
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Miscellaneous 4.2 Other Perturbation Models

4.2 Other Perturbation Models

All results of our experiments are based on the “standard perturbation model”
(p; 1,¢) (see Definition M1l on page [26)), which is a generalization of the perturba-
tion model introduced by Schwarz (see [Sch 2003]). In this section we check the
validity of our results for a set of different perturbation models.

With the standard model the edge weights always increase when they get per-
turbed. Thus a perturbation always means a change for the worse. A first modifi-
cation changes this property and results in model (p; %, c).

Definition M2 ((p; %, c)-model)
Given is a » -type problem P = (E, F,w). We simulate the corresponding per-
turbed problem by defining a new instance of weights

Ble) = Ac(e) -w(e) : with probability p
wie = w(e) : with probability 1 —p

independently for all elements e. Here the \.(e) are independent random numbers,
uniformly distributed in the interval [%,¢] C R, ¢ > 1.

Both the (p;1,¢)- and the (p; %,c)—model perturb the weights independently
and identically distributed for all elements e € E . The next model perturbs
the weights w(e) of the elements e € E in dependence of their weight w(e). It
tends to perturb “attractive” elements with a small weight w(e) more likely than
“unattractive” elements with a large weight w(e). A similar effect would also be
achieved by using additive perturbations instead of multiplicative perturbations,
for example in our standard model (p; 1, c).

Definition M3 ((p := 1 — w(e); 1, ¢)-model)

Given is a Y -type problem P = (E,F,w) with 0 < w(e) < 1 for all e € E.
We simulate the corresponding perturbed problem by defining a new instance of
weights

(c) = Ae(e) -w(e) :  with probability p :=1 — w(e)
© w(e) : with probability 1 —p

independently for all elements e. The A.(e) are independent random numbers,
uniformly distributed in the interval [1,c] C R.

Furthermore we test an unbiased perturbation model. Here the expectation
E [@w(e)] of the perturbed weight w(e) is equal to its original weight w(e).
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Definition M4 (((p := ﬁ; 1,¢), (1 — p; £,1))-model)
Given is a » -type problem P = (E, F,w). We simulate the corresponding per-

turbed problem by defining a new instance of weights

() = Aai(e) -w(e) :  with probability p := 0%1
‘ Ae2(€) -w(e) : with probability 1 —p

independently for all elements e. The A.(e) are independent random numbers,
uniformly distributed in the interval [1,¢] C R. The As(e) are independent
random numbers, uniformly distributed in the interval [%, 1] C R.

Finally, we test a model where the perturbation factors A.(e) are not uniformly
distributed, but one sided normally distributed, based on N (1, 0?) with expectation
g = 1 and variation o2 (see Figure 4.5 on page 62). The density function of this
one-sided normal distribution OSN (1, ¢?) is given by

_(@=1)2

fla) =1 Vama ¢ 7 vzl
0 : <Ll

Definition M5 (OSN (1, c?)-model)
Consider one of the presented Y -type problems P = (E, F,w). We simulate the
corresponding perturbed problem by defining a new instance of weights

independently for all elements e. The \.(e) are independent random numbers,
one-sided normally distributed OSN (1, ¢c?).

For each of the four additional perturbation models M2 to M5 we performed
the whole set of experiments (see Table 4.1 on page 62). The results are shown
in detail in Appendices (C-F. They completely support the main observations we
made for our basic perturbation model:

e The average rates (™ /(™) are always unimodal in . It always exists an op-

timal penalty parameter elm
is minimal with respect to ¢.

such that the appropriate average rate ¢t /(™

e The optimal penalty parameter elm depends on the problem parameters,
the perturbation parameters and the method (normal or mutual penalty

method).
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e The optimal penalty parameter 7" for the mutual penalty method is smaller
than the optimal penalty parameter ¢, for the normal penalty method, when
all other parameters are identical.

e For all methods, optimization problems and perturbation parameters the
average rate @™ /y(™ is smaller than 1 if the optimal penalty parameter
e is used.
e The mutual penalty method reaches as good results as the normal penalty
method, but is not better.
For the dependence of the optimal penalty parameter e on the perturbation
parameters we observe that:

e For the models M3 to M5 the optimal penalty parameter ™ increases for

increasing variation of the random perturbation factor Var(ﬁ%i?).
e But for our standard model (p; 1, ¢) with
w(e) p P
o (89) - e 752
“ w(e) (c=1) 3 4

the above observation does not hold. Here the characteristics, that also hold
for the model M2, are given in Section 3.3.3/ (p. 139).

For the dependence of the average rates (™ /x(™ on the perturbation para-
meters we observe that:

e The resulting average rate does not decrease with increasing expectation of

the random perturbation factor E [38] A good indicator for this is the

unbiased model M4. It produces the best (smallest) average rates of all
models, although it holds

5[50 -

for all edges e € F.

e The resulting average rate (™ /(™ does not decrease with increasing varia-

tion of the random perturbation factor Var (%) For example, the pertur-

bation factor of model M5 has a large variation and the appropriate average
rate is worst (highest) in comparison to the other models.
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4.2 Other Perturbation Models

————————— N(1,4)
OSN(1,4)

Figure 4.5: Density functions of the normal distribution N(1,0?) and the corresponding
one-sided normal distribution OSN (1, ¢?).

penalty method

with exact algorithms o(e) ExsPe,
(T =109)

mutual penalty method

with exact algorithms o™ (e) ey Pe

(T = 10%)

SP,ASP with n = 25

I. = {0.025,0.050, ..., 0.750}

I. = {0.025,0.050, ..., 2.500}

penalty method

with heuristics x(e) € Xex
(T = 10)

mutual penalty method

with heuristics X™(€) XXz,

(T = 105)

ASP, TSP with n =25

I. = {0.025,0.050,...,0.750}

I. = {0.025,0.050,...,2.500}

M2

p=0.1;¢c=4,8,16,32; and
p=0.01,0.1,0.25,1.00;c = 8

p = 0.01,0.02,0.04,0.08,0.16,0.32,
0.64,1.00; ¢ = 4,8, 16,32, 64

M3, M4

c=4,8,16,32;

c=2,4,8,16,32,64

M5

c=1,2,4,8,;

c=1,2,4,8,16,32

Table 4.1: Overview of the experiments with different perturbation models.
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4.3 Specific Problem Instances

In Chapter 3l we always analyzed a situation where only the class of a problem is
given, but in some situations a specific fixed instance of a problem may be given.
Then the planner is interested in the behavior of this specific problem.

4.3.1 Specific Perturbation Instances

If in a specific problem instance we look at one specific instance of perturbations,
then completely different behavior may occur depending on the problem instance
and the perturbations. Especially the following may happen: with respect to the
perturbed weights @ the original optimal solution Sy is better than some alterna-
tives S, with i € I; (¢., = 1 for all i € I;) and worse than some other alternatives
Se, with i € I (., < 1 for all i € I5). In some cases one of the two index sets is
the empty set: I; = () or I, = ). Figures 4.6/ and [4.7 show two possible situations.
Other examples can look quite different.

100 —H—EEEEEEEEEEEEE 1,00 & = e
0.97 1 \ 095 f

nil el
Rl I

&8 [‘g’B—B—E}—E}—B—B—&]
085 b 075 Lo
2832838885338 ¢58%85%8 5823838883388 8E
€ €
Figure 4.6: Shortest path problem — Figure 4.7: Assignment problem —
time rates ©e—0.02; Pe=0.04; - - - » Pe=0.60 for cost rates pe=0.02, Pe=0.04; - - - ; Pe=0.60 for
one randomly generated ‘shortest path one randomly generated ‘assignment
problem’-instance with one randomly problem’—instance with one
generated instance of perturbed weights; randomly generated instance of perturbed
[n=25,p=0.25¢=§] weights; [n = 25,p = 0.125, ¢ = §]

For every instance of an optimization problem the rates (. decrease and in-
crease in steps for growing . There is always a limited number of intervals
la;,a;11] € R for which the penalty method generates the same e-penalty solu-
tion for all € € [a;, a;41]. So the rates ¢, of the solution pairs {Sy, S.} are equal for
all € € [a;,a;41]. Obviously these intervals depend only on the problem instance.
The height of the steps depends on the perturbation instance, the perturbation
parameters p, ¢ and the tested problem instance.
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4.3.2 Average Perturbation Instances

In a next step we look at the average behavior of the rates .., still for a fixed
problem, but for samples of randomly generated perturbed weights w. We ran-
domly generate a problem P = (FE,F,w) and calculate all the solution pairs
{80, Se, 15 {50, 5, }, -+ {50, S=p }- Then we iteratively repeat for ¢t = 1,2,...,T
the following two steps:

1. Randomly generate an instance of perturbed weights @®.

2. Evaluate the solution pairs with respect to @®.

Then the average rates @., of the specific problem instance are:

72 min (@0(Sp), @ (SL,))
2 %Zthl W (Sp)

Figure 4.8 shows (for exactly the same ’shortest path problem’-instance as
in Figure 4.6) the average rates for T = 10° independently generated random
instances of perturbed weights. And Figure 4.9 shows (for exactly the same
’assignment-problem’-instance as in Figure 4.7) the average rates for T = 10°
independently generated instances of perturbed weights, respectively.

fori=1,...,N .

1,00 & 1,00

0,97 0,95 -

0,94 =g = Tt 0,90

091 0,85 -

0,88 0,80

085 L 075

€ €

Figure 4.8: Shortest path problem — Figure 4.9: Assignment problem —
average time rates Pe—.02, Pe=0.04; - - - » average cost rates ©.—g.02, Pe=0.04, - - - »
Pe—0.60 for one randomly generated ©Ye—0.60 for one randomly generated
‘shortest path problem’-instance with 10° ‘assignment problem’-instance with 103
randomly generated instances of perturbed randomly generated instances of perturbed
weights; [n = 25,p = 0.25,¢ = §] weights; [n = 25,p = 0.25,¢ = §]

The average rates first decrease and then increase stepwise. There are always
intervals [a;, a;11] C R where the average rates ¢, of the solution pairs {Sy, S} are
constant for all € € [a;, a;41].
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In a typical situation with 0 < p < 1 and ¢ > 1 there exists an intermediate
interval of optimal penalty parameters [e,,, £.,] such that:

P, <@ forall e, €le,,e,] and e ¢ e, 6] (4.1)
$ey > @, forall g <e. <ey
Oy < @, forall e, <g <e,.

But in rare cases this property is not fulfilled. Then there are two (or more) inter-
vals of locally optimal penalty parameters. Figures 4.10 and 4.11/ show examples.

1,00 1,00

| m

0,97

0,94

0,91

0,88

0,85

€ €
Figure 4.10: Shortest path problem — Figure 4.11: Assignment problem —
average time rates Q.—0.02, Pe=0.04; - - - » average cost rates ©.—0.02, Pe=0.04, - - -
Pe=0.60 for one randomly generated Ye—0.60 for one randomly generated
‘shortest path problem’-instance with 10° ‘assignment problem’-instance with 10°
randomly generated instances of perturbed randomly generated instances of perturbed
weights; [n = 25,p = 0.25,¢ = §] weights; [n = 25,p = 0.25,¢ = §]
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4.4 The Optimal Solution of the Perturbed
Problem

In all our experiments it was allowed to choose from two different solutions (for
example Sy and S.) of a model with uncertain data. At the time of the decision
the “final” w-values of the solutions Sy and S. were known. The choice between
Sp and S. improved the situation significantly.

LS min (@@ (S57), @0 (SL))
T ~ t
%thl w(t)(S(() )>

Pe, =

Here we compare the minimal w-value of the two_solutions with the value of
the optimal solution for the perturbed problem. Let S, be this optimal solution
with respect to the true weights w. The appropriate average performance rate is
given by

T . ~ t o t
£ 3y min (@0(57), @ (S))

o = %0 )
Ly a®(SL)

Whereas the “old” rates @.. were smaller or equal to 1, the new rates @,. have
to be larger or equal to 1. It can be expected that the new rates ., are even
significantly larger than 1 for certain combinations of the perturbation parameters
p and c.

Anyhow, it is quite interesting to compare both cases for different perturbation
probabilities p and perturbation widths c¢. Figure 4.12 (identical to Figure 3.9
on page [34) shows how much can be saved by the choice between Sy and S, in
comparison to the reference case where only the original optimal solution Sy is
given. And Figure 4.13 shows how much the choice between Sy and S is worth
in comparison to the true optimal solution S,,. Both Figures are for the shortest
path problem.

In contrast, we present the data of both cases for the assignment problem in
one table (see Table4.2). There are two entries in every cell, separated by a colon.
First (in brackets), the “old” average rates @, (p,c) with respect to the former
optimal solution Sy are given. And second, the new rates @.. (p, ¢) with respect to
the optimal solution of the perturbed problem are given.

The “new” average rates @.. are increasing in ¢ and unimodal in p. In the
most extreme case with p = 0.32 and ¢ = 64 the average minimal value of the
solution pair is about six times as large as the average value of the new optimum.
Thus it would be a huge advantage to know the “true® optimum S,,;. The choice
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Figure 4.12: Shortest path problem —
average time rates ¢. (p,c) with respect to
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Figure 4.13: Shortest path problem —

average time rates @._(p,¢) with respect to
the optimal solution of the perturbed

problem; problem;
[n = 25; I. = {0.025,0.05,...,2.5}; [n = 25; I. = {0.025,0.05,...,2.5};
T =107] T = 10°]
P\ 4 | 8 | 16 | 32 | 64 |
0.01 || (1.00) : 1.00 | (0.99) : 1.01 | (0.96) : 1.03 | (0.92) : 1.05 | (0.83) : 1.08
0.02 || (0.99) : 1.01 | (0.97) : 1.03 | (0.93) : 1.06 | (0.86) : 1.11 | (0.75) : 1.20
0.04 || (0.98) : 1.02 | (0.95) : 1.06 | (0.89) : 1.12 | (0.80) : 1.25 | (0.69) : 1.49
0.08 || (0.97) : 1.04 | (0.93) : 1.12 | (0.86) : 1.28 | (0.77) : 1.59 | (0.68) : 2.21
0.16 || (0.96) : 1.09 | (0.91) : 1.26 | (0.84) : 1.61 | (0.78) : 2.34 | (0.74) : 3.78
0.32 || (0.95) : 1.16 | (0.91) : 1.49 | (0.86) : 2.17 | (0.84) : 3.56 | (0.82) : 6.34
0.64 || 0.96) : 1.23 | (0.93) : 1.66 | (0.91) : 2.53 | (0.90) : 4.26 | (0.90) : 7.64
1.00 || (0.97) : 1.12 | (0.96) : 1.29 | (0.96) : 1.50 | (0.95) : 1.74 | (0.95) : 1.95

Table 4.2: Assignment problem — average cost rates ¢., with respect to the optimal solution

of the original problem in contrast to the average cost rates 5—5\ with respect to the optimal
solution of the perturbed problem; shown in the form (¢, ) : @..
[penalty method; n = 25; I. = {0.025,0.05,...,2.5}; T = 10

from good candidate solutions is only profitable as long as this new optimum is
not available or the time/cost needed to get it is too large.

In case of seldom but severe perturbations the situation is different. For ex-
ample, with p = 0.01 and ¢ = 64 the choice from two solutions Sy and 5., saves
on average about 17% in comparison to the case where only the original optimal
solution Sy is known. And this minimal value of Sy and S., is on average only
about 8% larger than the value of the true optimum S,.

67



Miscellaneous 4.5 The Expectation of the Quotient

4.5 The Expectation of the Quotient
versus the Quotient of the Expectations

In Subsection 3.1.1 we introduced our experiments. We announced to analyze the
expected performance improvement by the choice between two alternatives S,
and S, in comparison to the situation without choice. We scaled the expected
minimal value of the two alternatives S,, and S,, by the expected value of the
original optimal solution Sj:

E min (@(Sa1)>@(sa2))
E w(Sy)

Instead we could have defined the expected performance ratio also by the expec-
tation of the rate

(B/E) . _

'

min (@(S,, ), @<Sa2))] .

® ._
o =E | @(S0)

The following example illustrates why the expected value of the quotient (in
contrast to the ratio of the expectations) is actually not suitable for our analysis.
It misrepresents the situation and can easily be misinterpreted.

Consider two identical algorithms Ax and Ay. For a certain minimization
problem they randomly result in one of n possible solutions with the values

X ={z,29,...,2,} and Y ={y1,y2,...,Yn}
with
O<x;=vy; forall 1=1,2,....n
and

P(X =2;,Y = Y;) = Doy, = Payye forall i=1,2,... n.

For all z; # y; we have

ZT; T
Daiy; y_] +pl‘jyz‘ ) E
_ Li | Ly _
- pziyj : (; + E) >2- pxiyj - pa:iyj ‘I'pzjyi )
since
>0
_’L+_j:’tl JJy J 1J]) j+2: 1 7 +2>2
Y Y YilY; LY T3y LY
0
>
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If there is at least one pair i # j with p,,,. > 0, then

X n n 2
E (?) ;; Paiy; - v
“p o+ Y e (47
i=1 \yj/ =1 j—it1 SYi Y
=1 >2
> Z Z pmiyj =1 )
i—1 j—1

but by symmetrie of course also

E (%) >1.

Thus it obviously is wrong to conclude from E (%) > 1 that algorithm Ay is
better on average than algorithm Ay.
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4.6 Connection to Multi-Criteria Optimization

This section establishes a connection between the penalty method and multicri-
teria optimization (see [Ehr 2000], [GHS 1999]). Thus we have to introduce some
standard concepts. Consider a ) -type problem P = (E, F,w). The problem

gg(fl(S),fQ(S))

with two different objective functions f; and f5 is a bi-criteria optimization prob-
lem. If there is no priority for either f; or fs, then there exist in general several
solutions (the “efficient frontier”) from which none is better than any other with
respect to both objectives. These solutions are called Pareto-optimal. More for-
mally:

Definition 4.6.1
A solution S, € F' is called weakly (strictly) Pareto-optimal, if thereisno S € F,
S # S, such that f;(S) < f;(Si) for i =1,2 (f;(S) < f;(S,) fori =1,2).

A solution S; € F dominates a solution Sy € F, if f;(S1) < fi(Ss) for i = 1,2
and f;(S1) < f;(Ss2) forj=1orj=2.

By a weighted sums scalarization the bi-criteria optimization problem can be
reduced to a single criteria optimization problem:
min f(S)
with  f(S) = M fi(S) + A2 f2(S) and A, A2 > 0.

This problem can be solved with traditional algorithms. But in some situations

this method has a big disadvantage that is illustrated by the following example.
Every dot in Figure [4.14 represents one of the 10* shortest paths of a 25 x 25

grid graph evaluated by two objective functions. The horizontal axis represents

f1(S) :=w(S), the length of the path
and the vertical axis represents

f2(S) :=w(SNSy), the shared length with the optimal solution Sy.

All Pareto-optimal solutions - the interesting alternative paths - are indicated
by the symbol 0. All paths that can be optimal solutions of the weighted sums
problem above for a certain combination of the weights A, A\ > 0 are addition-
ally marked by the symbol x. In this example, there are several Pareto-optimal
solutions that cannot be optimal for the weighted sums method, for instance the
solution-triple in the middle of the figure (length ~ 11.5, shared length ~ 7.3).
These solutions are called non-supported non-dominated solutions.
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Figure 4.14: The 10* shortest paths of a randomly generated 25 x 25 grid graph sorted by
their length (horizontal axis) and their shared length with the shortest path (vertical axis).

They are Pareto-optimal solutions that are not on the border of the convex
hull of the solution space. But if f is a positive linear combination of f; and fs,
obviously only a solution that is on this border can be optimal for f.

Thus there are problems for which a weighted sums approach can reach only
a part of the Pareto-optimal solutions. In critical examples this part can be very
small.

The penalty method corresponds to a weighted sums approach with the two ob-
jective functions f1(S) = w(S) and fo(S) = w(SNSy) and the weights A\; := 1 and
A2 := £. Thus it has the disadvantage of missing non-supported non-dominated so-
lutions, if F' is not a convex, compact set with respect to f; and f; (see [Ehr 2000]).

With this background it could be promising to have a closer look at the theory
of multicriteria optimization. It might deliver algorithms that are more complex
and thus need more computation time, but do not have the disadvantage of missing
non-supported non-dominated solutions.
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Chapter 5

Conclusions and Open Problems

5.1

—

Conclusions

In all our experiments it turned out that it is clearly advantageous to have
two different solutions to choose from. In the case of seldom but severe
perturbations the average benefits are largest.

These benefits get only realized if a good penalty parameter £ is chosen.
In our experiments there always existed an optimal intermediate penalty
parameter €, such that the benefit was maximal. The more the penalty
parameter in use differed from the optimal penalty parameter, the worse the
average results were.

Unfortunately (in view of practice), the optimal penalty parameter e, de-
pends on the problem, the problem size n and the simulation parameters p
and c. The following rules of thumb give a general idea of the dependencies:

The optimal penalty parameter e,

— monotonically decreases in the problem size n.
— monotonically increases in the perturbation width c.

— first increases slightly then decreases in the perturbation probability p.
For small perturbation widths ¢ the penalty parameter ¢, is nearly con-
stant in p.

Furthermore, we conjecture that it is better to overestimate the optimal
penalty parameter ¢, than to underestimate it by the same amount.

In our experiments the mutual penalty method reached as good results as
the normal penalty method, but was not better.
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— Whereas the dependencies of the optimal penalty parameter ¢, are qualita-
tively equal for the normal and the mutual penalty method, the penalty pa-
rameters differ quantitatively. For the mutual approach the optimal penalty
parameter €7 tends to be a bit smaller than e,.

— When a good penalty parameter ¢ is chosen, even the use of the penalty
method with heuristics leads on average to better results than simply taking
a pair of independently generated heuristic solutions.

— The penalty method is easily implemented. The computation of e-penalty
solutions is as easy as the computation of the optimum in the original prob-
lem.

5.2 Open Problems

— The unimodal behavior of the average rates @™ /x™) with respect to the
penalty parameter £ and thus the existence of the optimal intermediate
penalty parameter efkm) is only an experimental result. It should be proved
theoretically. A first investigation for smaller problems was done and will be
documented in [Sam 2005b].

— The results of our investigation of course depend on the definition of the
performance ratio

E min (#(Su). #(S)) _ 7 Xim min<A<t><s<“>,@<t><sé?>>
E {ﬁ(SO) T Zt 1 ( ))

()0:

We showed in Section 4.5 that the expectation of the quotient

min (wW(S,, ), 0( min (@ S( )), @9 (S5))
Rt Z a0 (50)

is not a suitable definition for our purposes.

Another possibility would be to define the average performance ratio by the
geometric mean:

- T min (@(t)(Sffl)),@ \/Ht 1 mln w(t)<So(Lt1) A (Sa2)))
o= (11 b (5 i /ald) '
1 B0 (Sy”) I, w0(s)

Here the mean of the quotients is identical to the quotient of the means.
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— Our classes of randomly generated optimization problems and our pertur-
bation models are quite artificial. The behavior of alternative “real-world”
models that are observed from specific practical applications should be ana-
lyzed.

— We focused on the case with two different solutions to choose from. The
penalty method can also be used to generate more than one alternative. A
first investigation was done by Schwarz (see [Sch 2003], p. 45).

— Are there instances of > -type problems and combinations of parameters
(p, ¢) for our standard perturbation model (p; 1, ¢) such that a non-dominated
non-supported solution S,,,q of the corresponding bi-criteria optimization
problem (see Subsection [4.6) is a better alternative than the optimal e-
penalty alternative S.,?

— Real-life experiments with human supervisors should be done to show the
benefit of multiple choice systems in non-artificial environments. For exam-
ple, high-level strategic board games seem to be ideal for such experiments
(see JAS 2002],[Alt 2004]).
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Appendix A

Notations and Basics

A.1 Notations

A.1.1 General

Investigated Optimization Problems

e P = (E,F,w) defines a Y -type problem (see Definitions 1.1.1 p.5; 1.1.2.1
pl6; 1.1.2.2 pl6 and [1.1.2.3/ p.7).

e w0 is a perturbed instance of the weight function w of problem P. The original
weight w(e) of each edge e gets perturbed by a random variable A.:

w(e) = A.(w(e)) forall ee€FE.
See Definitions M1 p.26; M2 p.59; M3 p/59; M4 p.60 and M5! pl60.
Solutions derived by exact algorithms
e Sy denotes a globally optimal solution of P.

e S, denotes an e-penalty solution of P derived from the penalty method with
respect to solution Sy (see Definition 2.2.1/ p/11).

o {Si(c), S2)} denotes an e-penalty solution-pair of P derived from the mutual
penalty method (see Definition 2.3.1/ p.15).

Solutions derived by heuristic algorithms

e S;; and S, are two independently determined locally optimal solutions of P
(see Subsection 2.2.3/ p/13).

e S. denotes a heuristic e-penalty solution of P derived from the penalty
method with respect to solution S (see Definition 2.2.4/ p/13).
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° {51(5), 5’2(6)} denotes an e-penalty solution-pair of P derived from the mutual
penalty method (see Subsection 2.3.3.2/ p.23).

Simulation

eFort=1,...,N, P® = (E, F,w®) is a randomly generated instance of P
(i.i.d for all t) and @® is a randomly generated instance of perturbed weights
of problem P® (i.i.d for all t).

e The solutions of problem instance P® are marked by a superscript (t).

o [.:={e1,89,...,en} CR with0 < e <&y <...<en denotes the set of
penalty parameters € for a certain experiment.
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A.1.2 Definitions for Exact Algorithms
A.1.2.1 Penalty Method

Ay e min(@9(S), @0 (8))

806 = —~ ~ t (Al)
%Zt:l...T w(t)(S(() ))
0+ P{lpe — @] < 0.} =~ 0.98 (A.2)
’I“€< =5 Z 1 (o) S(t))<7b(t)(S(t))) (As)
_ 1
T T Lo (s)=e05(0) (A4
t=1..T
Ex 1= Ejx 1 Pepu < P, for all e;,e;« € I, (A5)
A.1.2.2 Mutual Penalty Method
. (t) (t)
o e T 2. min (@ )(Sl(e)) @ (Sy0))) (A7)
e .
T2ty O t)( )
67 P{ler — gr < 07}~ 0.98 (A8)
1
<
re o= T Z 1(min(7b(t>(5ﬁ>>)1b( (550, <0 (s5y) (A.9)
t=1..T
_ 1
r. = ft o 1(min(’b(t>(sﬁ)s>)vqb(t)(Sét()g))):dc(”(s(()t))) (Alo)

m -m -m

el =ep t gn, <pr forall g6 € L ( )
P = Pl (A.12)
o = 8, (A.13)
Apgy = Pemi0.1 — Pem ( )
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A.1.3 Definitions for Heuristic Algorithms
A.1.3.1 Penalty Method

v %thl...T min (@) vz(f))a@(t)( v(t)))

€
Xe = PN (D~ (L (A15)
LSy min (BO(S), 50(S5))
de = P{|xe — Xe|l <0} =~ 0.98 (A.16)
T5< =T IZT (min () Sm) di)<t)(5(t>))<m1n(1b(t)( ()),do“)(s‘fﬁ)))) <A17)
t
_ 1
T 1T L min(® (321,00 (39)) =min(® (301,60 (3))) (A.18)
Eg 1= €4 ! Xﬁz‘* < Xe; for all Ei,Ex € 1. <A19)
AXo1 = Xew+0.1 — Xe., (A.20)
A.1.3.2 Mutual Penalty Method
. -~ > -~ (T
o T T min (@O(S). 0(Sy)) e
e . -~ (T ~ S(T :
F X min (@O(S), DO (S5)
om P{Ix™ — X" <67} ~0.98 (A.22)
= zle (min(0® (S5)), 0" (S5 ) <min(®®) (5{;),00 (7)) (4.23)
t
-1 A
Te 7 TH . 1(mm(vb<*>(s‘” )0 (S5 ) =min(0® (S[7)),01)(S1)))) (A.24)
ef =g Xo, < xo forall g6 € L (A.25)
X = X (A.26)
o =0l (A.27)
AXoq = Xem40.1 — Xem (A.28)
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A.2 Local Search

Local Search is a well known heuristic algorithm (see [AL 2003]). There are many
different variants of Local Search. Here we briefly explain the variant that we used
for our experiments.

Consider a sum type optimization problem P = (F, F,w). For every solution
S C F let N(S) be the set of neighbors of S and let N' = {N(S) : S € F}.
Algorithm [A.1] describes a basic local search. If F' is finite, the algorithm stops
after a finite number of steps.

Require: P = (E, F,w), N, initial solution S € F

1: t:=0;

2: calculate w(S®);

3: while (not done) do
search S(H1) e N(S®) with w(S¢HD) —w(S®) <0
5 if found then
6 t:=t+1;
7. else
8
9

done;
. solution S® is locally optimal for P

Algorithm A.1: basic local search

The algorithm does not specify the search procedure exactly. In a real appli-
cation it has to be specified how the initial solution S® is chosen and how the
local improvement steps are done. In our experiments the initial solution S© is
generated randomly. For the local improvement steps we use the following strategy:

e Evaluate the neighbors N(S) of a solution S in a certain order. The first
neighbor that results in an improvement is chosen. This strategy is called
fast local search. Here a further differentiation of the algorithm is possible
by the order in which the neighbors are evaluated.

In our experiments we use a cyclical strategy with a random starting po-
sition. Let the set of neighbors of S be N(S) = {Sy, S1,...,Sk-1}, the S;
are numbered. Furthermore, let ¢ be a random number that is uniformly
distributed in {0, 1,...,k — 1}. Then we evaluate the neighbors in the order
Si, S(i+1) mod k» - - -+ S(i+k—1) mod k- The random starting position i is gener-
ated independently for every search step.

Finally, for a specific optimization problem the structure of the neighborhood
N = {N(S) : S € F} has to be defined. For the assignment problem we use
the 2-exchange neighborhood (see |[AL 2003] p.4) and for the traveling salesman
problem we use the 2-opt neighborhood (see [AL 2003] p.230).
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Results - (p; 1, ¢)-Model

B.1 Exact Algorithms

B.1 Exact Algorithms

B.1.1 Penalty Method (see Sections 3.3.1, 3.5, 4.1)

B.1.1.1 Shortest Path Problem

A
0,90 ‘A
BAAAANDNADALEELILELELLLD

0,85

0,80 |

075 L
N O WmwW o W o wWwo wWwouwOoLwmo wn
SHd N N®OIITHBEORN
O O O O OO OO o o o o o o o

€

Figure B.1: Shortest path problem —
average time rates @, for different «;
[n=25; p=0.1; c = 4,8,16,32; T = 10°]
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Figure B.3: Shortest path problem —
98% certain maximal error d;
[n=25; p=0.1; c = 4,8,16,32; T = 10°]
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Figure B.2: Shortest path problem —
average time rates ¢, for different ¢;

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 10]
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Figure B.4: Shortest path problem —
98% certain maximal error dc;

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 10]
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1,00

0,80

0,00 =

Figure B.5: Shortest path problem —
relative part of simulation runs r< with
b(S:) < ®(S0);

[n=25; p=0.1; c = 4,8,16,32; T = 10°]
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Figure B.7: Shortest path problem —
relative part of simulation runs rZ with
(52) = 9(S0);

[n=25;p=0.1; c = 4,8,16,32; T = 10%]

—B-p=0.1; c=4
——p=0.1; c=8

—A—p=0.1; c=16
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—&-p=0.1; c=4
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1,00
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Figure B.6: Shortest path problem —
relative part of simulation runs r< with
b(Se) <d(So);

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 10°]
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Figure B.8: Shortest path problem —
relative part of simulation runs rZ with

B(S:) = d(So);

—£-p=0.01; c=8
——p=0.10; c=8
—A—p=0.25; c=8
% p=1.00; c=8

—&-p=0.01; c=8
——p=0.10; c=8
—A—p=0.25; c=8
—p=1.00; c=8

[n = 25; p = 0.01,0.1,0.25,1.00; c = 8; T = 107]
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Figure B.9: Shortest path problem —
optimal penalty parameters €4 (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°]
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001 002 004 008 016 032 064 1
p
Figure B.11: Shortest path problem —
relative part of simulation runs 75 (p,c) with
B(Se,) < d(So)
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°]
0,010
0,008
0,006 B-c=4
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Figure B.13: Shortest path problem —
98% certain maximal error de, (p, c);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10?]
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Figure B.10: Shortest path problem —
optimal averages time rates @., (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°]
1,00
0,80
0.60 —B-c=4
' -©-c=8
A c=16
=32
0,40 c=64
0,20
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Figure B.12: Shortest path problem —
relative part of simulation runs rZ (p,c) with
0(Se, ) = 0(S)
[n = 25; I. = {0.025,0.05, ...,2.50}; T = 10°]
0,010
0,008
0,006 - c=4
—-o-c=8
—A-c=16
" —+-c=32
0.00 c=64
0,002
0,000

Figure B.14: Shortest path problem —
loss of quality A@o.1(p,c) by overestimating e« by 0.1;
[n = 25; I. = {0.025,0.05, ...,2.50}; T = 10°]
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Figure B.15: Shortest path problem —
optimal penalty parameters e« (n);
[I. = {0.025,0.050,...,1.00}; T = 10°]
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Figure B.17: Shortest path problem —
relative part of simulation runs S (n) with
B(Se,) < ?(So)

[I. = {0.025,0.050,...,1.00}; T = 10%]
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Figure B.19: Shortest path problem —
98% certain maximal error dc, (n);
[I. = {0.025,0.050,...,1.00}; T = 10°]
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Figure B.16: Shortest path problem —
optimal average time rates @e, (n);
[I. = {0.025,0.050,...,1.00}; T = 10°]
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Figure B.18: Shortest path problem —
relative part of simulation runs rZ, (n) with
(S..) = (So)

[I. = {0.025,0.050, ...,1.00}; T = 10°]
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Figure B.20: Shortest path problem —
loss of quality A@p.1(n) by overestimating ex by 0.1;
[I. = {0.025,0.050,...,1.00}; T = 10°]
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B.1.1.2 Assignment Problem
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Figure B.21: Assignment problem —
average cost rates @, for different ¢;
[n=25 p=0.1; c=4,8,16,32 T = 10]
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Figure B.23: Assignment problem —
98% certain maximal error d¢;
[n=25;p=0.1; c = 4,8,16,32; T = 10%]

Figure B.22: Assignment problem —
average cost rates @, for different ¢;

—&-p=0.01; c=8
——p=0.10; c=8
——p=0.25; c=8

p=1.00; c=8

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 107]
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Figure B.24: Assignment problem —
98% certain maximal error J;

—&-p=0.01; c=8
—o—p=0.10;
—A—p=0.25; c=

p=1.00;

[n = 25; p = 0.01,0.1,0.25,1.00; c = 8; T = 10°]
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1,00 1,00
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0,60 —B8-p=0.1; c=4 0,60 - —8-p=0.01; c=8
——p=0.1; c=8 ——p=0.10; c=8

—A—p=0.1; c=16
% p=0.1; c=32

~A—p=0.25; c=8
% p=1.00; c=8

Figure B.25: Assignment problem — Figure B.26: Assignment problem —

relative part of simulation runs r< with relative part of simulation runs r< with

b(Se) < (S0); b(Se) < B(S0);

[n=25; p=0.1; c = 4,8,16,32; T = 10°] [n = 25; p=0.01,0.1,0.25,1.00; ¢ = 8; T = 10°]

1,00 1,00

080 080 |

0,60 —&-p=0.1; c=4 —&-p=0.01; c=8

——p=0.10; c=8
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Figure B.27: Assignment problem — Figure B.28: Assignment problem —
relative part of simulation runs rZ with relative part of simulation runs rZ with
b(Se) = 0(50); b(Se) = b (S0);
[n =25, p=0.1; c=4,8,16,32; T = 10°] [n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 10°]
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Figure B.29: Assignment problem —
optimal penalty parameters €4 (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°]
1,00
0,80
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' —6-c=8
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—+-c=32
0,40 c=64
0,20
0,00
001 002 004 008 016 032 064 1
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Figure B.31: Assignment problem —
relative part of simulation runs 75 (p,c) with
B(Se,) < d(So)
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°]
0,010
0,008
0,006 —B-c=4
-6-c=8
—A-c=16
0.004 —+—c=32
! c=64
0,002
0,000

001 002 004 008 016 032 064 1
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Figure B.33: Assignment problem —
98% certain maximal error de, (p, c);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10?]
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Figure B.30: Assignment problem —
optimal average cost rates @, (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°]
1,00
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0.60 -B-c=4
' -o—c=8
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Figure B.32: Assignment problem —
relative part of simulation runs rZ (p,c) with
0(Se..) = b(S0)
[n = 25; I. = {0.025,0.05, ...,2.50}; T = 10°]
0,010
0,008
0,006 —B-c=4
—6-c=8
—A-c=16
0,004 —+—c=32
! c=64
0,002
0,000

Figure B.34: Assignment problem —
loss of quality A@o.1(p,c) by overestimating e« by 0.1;
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10]
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Figure B.35: Assignment problem —
optimal penalty parameters e« (n);
[I. = {0.025,0.050,. ..,1.50}; T = 10°]
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Figure B.37: Assignment problem —
relative part of simulation runs S (n) with
B(Se,) < ?(So)

[I. = {0.025,0.050,...,1.50}; T = 10%]
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Figure B.39: Assignment problem —
98% certain maximal error dc, (n);
[I. = {0.025,0.050,. ..,1.50}; T = 10°]
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Figure B.36: Assignment problem —
optimal average cost rates @¢, (n);
[I. = {0.025,0.050,...,1.50}; T = 10°]
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Figure B.38: Assignment problem —
relative part of simulation runs rZ, (n) with
(S..) = (So)

[I. = {0.025,0.050, ...,1.50}; T = 10°]
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Figure B.40: Assignment problem —
loss of quality A@p.1(n) by overestimating ex by 0.1;
[I. = {0.025,0.050,...,1.50}; T = 10°]
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B.1.2

B.1.2.1

Mutual Penalty Method (see Sections 3.3.2,, 3.5, 4.1)

Shortest Path Problem
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Figure B.41: Shortest path problem — Figure B.42: Shortest path problem —
average time rates @2 for different ¢; average time rates @7* for different ¢;
[n=25;p=0.1; c=4,8,16,32; T = 104] [n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 104
0,020 0,020
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Figure B.43: Shortest path problem —
98% certain maximal error 67%;
[n =25 p=0.1; c=4,8,16,32; T = 104]

Figure B.44: Shortest path problem —
98% certain maximal error 67;

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 10%]
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Figure B.45: Shortest path problem —
relative part of simulation runs r< with
min(®(S1(.)), B(S2(c))) < B(So);
[n=25; p=0.1; c = 4,8,16,32; T = 104]
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Figure B.47: Shortest path problem —
relative part of simulation runs rZ with
min(®(Sy(e)), B(S2(e))) = B(S0);
[n=25;p=0.1; c =4,8,16,32; T = 104]

—&-p=0.1; c=4

—&—p=0.1; c=8

—A—p=0.1; c=16
p=0.1; c=32

—B-p=0.1; c=4
——p=0.1; c=8
—A—p=0.1; c=16

p=0.1; c=32

1,00

0,80

0,60
BAAAADALLALA

0,40

0,00

Figure B.46: Shortest path problem —
relative part of simulation runs r< with

min(®(Sy(s)), B(Sa(c))) < B(So);

—£-p=0.01; c=8
——p=0.10; c=8
—A—p=0.25; c=8

p=1.00; c=8

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 10%]

1,00

—&-p=0.01; c=8
—o—p=0.10; c=8
—A—p=0.25; c=8

p=1.00; c=8

0,00 -

Figure B.48: Shortest path problem —
relative part of simulation runs rZ with

min(d(Sy(e)), B(S2(e))) = B(S0);

[n = 25; p = 0.01,0.1,0.25,1.00; ¢ = 8; T = 10%]
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Figure B.49: Shortest path problem —
optimal penalty parameters €7 (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10%]
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Figure B.51: Shortest path problem —
relative part of simulation runs 75, (p, ¢) with
min(®(S(cm)), B(S2(emy)) < B(So);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10%]
0,030
0,025
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B-c=4
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Figure B.53: Shortest path problem —
98% certain maximal error 67" (p, c);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 104]
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Figure B.50: Shortest path problem —
optimal average time rates @7 (p, c);
[n = 25; I. = {0.025,0.05, ...,2.50}; T = 10%]
1,00
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Figure B.52: Shortest path problem —
relative part of simulation runs 75, (p, c) with
min(®(S1(cm)), B(S2(em))) = B(So);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10%]
0,010
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Figure B.54: Shortest path problem —
loss of quality Aggh (p, ¢) by overestimating " by 0.1;
[n = 25; I. = {0.025,0.05,...,2.50}; T = 104]
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Figure B.55: Shortest path problem —
optimal penalty parameters €7*(n);
[I. = {0.025,0.05,...,1.50}; T = 10%]
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Figure B.57: Shortest path problem —

relative part of simulation runs r5, (n) with

min(?b(SME;n)), ’b(SQ(&-;’L>)) < ’IID(S());

[I. = {0.025,0.05,...,1.50}; T = 10%]
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Figure B.59: Shortest path problem —
98% certain maximal error 67* (n);
[I. = {0.025,0.05,...,1.50}; T = 104]
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Figure B.56: Shortest path problem —
optimal average time rates @7 (n);
[I. = {0.025,0.05,...,1.50}; T = 104]
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Figure B.58: Shortest path problem —
relative part of simulation runs rZ, (n) with

min(b(sua;n))y@(52(5?))) =b(50);
[I. = {0.025,0.05,...,1.50}; T = 10%]
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Figure B.60: Shortest path problem —
loss of quality A@g', (n) by overestimating €}* by 0.1;
[I. = {0.025,0.05,...,1.50}; T = 10%]
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Figure B.61: Assignment problem —
average cost rates @7* for different ¢;
[n=25;p=0.1; c=4,8,16,32; T = 104]
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Figure B.63: Assignment problem —
98% certain maximal error 67%;
[n =25 p=0.1; c=4,8,16,32; T = 104
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Figure B.62: Assignment problem —
average cost rates @Z* for different ¢;

—8-p=0.01; c=8
—o—p=0.10; c=8
—A—p=0.25; c=8

p=1.00; c=8

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 10%]
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Figure B.64: Assignment problem —
98% certain maximal error 67;

—&-p=0.01; c=8
—o—p=0.10;
—A—p=0.25; c=

p=1.00;

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 10%]
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Figure B.65: Assignment problem —
relative part of simulation runs r< with
min(®(S51(c)), B(S2(c))) < B(So);
[n=25; p=0.1; c = 4,8,16,32; T = 104]
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Figure B.67: Assignment problem —
relative part of simulation runs rZ with
min(®(Sy(e)), B(S2(e))) = B(S0);
[n=25;p=0.1; c =4,8,16,32; T = 104]
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Figure B.66: Assignment problem —
relative part of simulation runs r< with
min(®(S1(c)), B(S2(c))) < ®(S0);

[n =25; p=0.01,0.1,0.25,1.00; c = 8; T = 10%]
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Figure B.68: Assignment problem —
relative part of simulation runs rZ with

min(d(Sy(e)), B(S2(e))) = B(S0);

[n = 25; p = 0.01,0.1,0.25,1.00; ¢ = 8; T = 10%]
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Figure B.69: Assignment problem —
optimal penalty parameters €7 (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10%]

1,00

0,80

0,60

0,40

0,20

—H-c=4
—©—c=8
—A—c=16
—+—c=32
c=64

0,00

001 002 004 008 016

p

0,32 064 1

Figure B.71: Assignment problem —
relative part of simulation runs 75, (p, ¢) with
min(®(S(cm)), B(S2(emy)) < B(So);

[n = 25; I. = {0.025,0.05,...,2.50}; T = 104]
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Figure B.73: Assignment problem —
98% certain maximal error 67" (p, c);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10%]
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Figure B.70: Assignment problem —
optimal average cost rates @2 (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10%]
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Figure B.72: Assignment problem —
relative part of simulation runs 75, (p, c) with

min(®(S1(cm)), B(S2(em))) = B(So);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 104]
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Figure B.74: Assignment problem —

loss of quality Aggh (p, ¢) by overestimating " by 0.1;

[n = 25; I. = {0.025,0.05,...,2.50}; T = 10%]
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Figure B.75: Assignment problem —
optimal penalty parameters €7 (n);
[I. = {0.025,0.050,...,1.5}; T = 10%]
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Figure B.77: Assignment problem —
relative part of simulation runs 75, (n) with

min(®d(Sy(cm)), B(Sz(em))) < B(So);
[I. = {0.025,0.050,...,1.5}; T = 10%]
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Figure B.79: Assignment problem —
98% certain maximal error 67* (n);

[I. = {0.025,0.050,...,1.5}; T = 10%]
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Figure B.76: Assignment problem —
optimal average cost rates @2 (n);
[I. = {0.025,0.050,...,1.5}; T = 10%]
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Figure B.78: Assignment problem —
relative part of simulation runs rZ, (n) with

min(d(Sy(em)), B(Saem))) = B(So);
[I. = {0.025,0.050,...,1.5}; T = 10%]
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Figure B.80: Assignment problem —
loss of quality Agg'; (n) by overestimating e7* by 0.1;
[I. = {0.025,0.050,...,1.5}; T = 10%]
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B.2 Heuristic Algorithms

B.2.1 Penalty Method (see Sections 3.4.1, 3.5, 4.1)

B.2.1.1 Assignment Problem
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Figure B.81: Assignment problem —
average cost rates e for different ¢;
[n=25; p=0.1; c = 4,8,16,32; T = 109]

0,010

0,008

0,006

0,004

0,002

[EEESEEEESESEEESEEEEREEEERSEs sy

0,000

Figure B.83: Assignment problem —

98% certain maximal error 55;
[n=25;p=0.1; c = 4,8,16,32; T = 109]
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Figure B.82: Assignment problem —
average cost rates e for different ¢;

[n = 25; p = 0.01,0.1,0.25,1.00; ¢ = 8; T = 109]
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Figure B.84: Assignment problem —
98% certain maximal error 55;

[n = 25; p = 0.01,0.1,0.25,1.00; c = 8; T = 10°]
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Figure B.85: Assignment problem —
relative part of simulation runs rS with

min(d(Sy1), ®B(Se)) < min(®d(S;1), ®(Si2));

[n=25;p=0.1; c =4,8,16,32; T = 10°]
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0,00 —
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Figure B.87: Assignment problem —
relative part of simulation runs rZ with
min(®($1), ®(S-)) = min(0(S;1), B(S12));
[n=25; p=0.1; c =4,8,16,32; T = 10°]

—&-p=0.1;
——p=0.1;
—A-p=0.1;
—%-p=0.1;

c=4
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c=16
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0,80
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0,20 |
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Figure B.86: Assignment problem —
relative part of simulation runs r< with

min(’b(S’ll), '&D(S’S)) < min(lb(gll), @(512));

—£-p=0.01; c=8
——p=0.10; c=8
—A—p=0.25; c=8
—%— p=1.00; c=8

[n = 25; p = 0.01,0.1,0.25,1.00; ¢ = 8; T = 10°]
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Figure B.88: Assignment problem —

relative part of simulation runs rZ with
min(®(Sy1), ®(Se)) = min(d(Si1), ©(Si2));
[n =25; p=0.01,0.1,0.25, 1.00;
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Figure B.89: Assignment problem — Figure B.90: Assignment problem —
optimal penalty parameters €4 (p, ¢); optimal average cost rates Xe, (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 109] [n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
1,00 1,00
0,80 0,80
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Figure B.91: Assignment problem — Figure B.92: Assignment problem —
relative part of simulation runs 7"€<* (p, c) with relative part of simulation runs rZ (p,c) with
min(d(Sy1), B(Se, ) < min(D(S1), B(S12)); min(®(S;1), ®(Se,)) = min(0(Si1), B(Si2));
[n = 25; I. = {0.025,0.05,...,2.50}; T = 109] [n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
0,010 0,010
0,008 0,008
0,006 —B-c=4 0,006 —8-c=4
-o-c=8 —-o-c=8
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Figure B.93: Assignment problem — Figure B.94: Assignment problem —
98% certain maximal error e, (p, c); loss of quality Axo.1(p,c) by overestimating e« by 0.1;
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°] [n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
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Figure B.95: Assignment problem —
optimal penalty parameters e« (n);
[I. = {0.025,0.050,...,1.50}; T = 109]
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Figure B.97: Assignment problem —
relative part of simulation runs 7 (n) with
min(®(51), ®(Se.,.)) < min(d(Sp1), B(Si2));
[I. = {0.025,0.050,....,1.50}; T = 10%]
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Figure B.99: Assignment problem —

98% certain maximal error o, (n);
[I. = {0.025,0.050,...,1.50}; T = 109]
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Figure B.96: Assignment problem —
optimal average cost rates Xe, (n);
[I. = {0.025,0.050,...,1.50}; T = 109]
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Figure B.98: Assignment problem —
relative part of simulation runs rZ (n) with
min(®(Sy1), ®(Se, ) = min(d(S;1), B(S12));
[I. = {0.025,0.050, ...,1.50}; T = 109]
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Figure B.100: Assignment problem —
loss of quality Axo.1(n) by overestimating £« by 0.1;
[I. = {0.025,0.050, . ..,1.50}; T = 10°]
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B.2.1.2 Traveling Salesman Problem
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Figure B.101: Traveling salesman problem —

average time rates x. for different ¢;
[n=25 p=0.1; c=4,8,16,32 T = 10]
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Figure B.103: Traveling salesman problem —

98% certain maximal error 55;
[n=25; p=0.1; c = 4,8,16,32; T = 109]
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Figure B.102: Traveling salesman problem —

average time rates . for different ¢;

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 10°]
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Figure B.104: Traveling salesman problem —

98% certain maximal error d;

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 10°]
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Figure B.105: Traveling salesman problem —

relative part of simulation runs r3* with
min(®(51), ®(Se)) < min(®(Sp1), B(Si2))
[n=25; p=0.1; c = 4,8,16,32; T = 109]
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Figure B.107: Traveling salesman problem —

relative part of simulation runs rZ with
min(®(S;1), 0(Se)) = min(d(S;1), ©(S12));
[n=25;p=0.1; c = 4,8,16,32; T = 109]
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Figure B.106: Traveling salesman problem —

relative part of simulation runs r< with

min((S;1), d(Se)) < min(d(S11), ?(S2))

[n = 25; p =0.01,0.1,0.25,1.00; ¢ = 8; T = 109]
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Figure B.108: Traveling salesman problem —

relative part of simulation runs r= with

min(®(S;1), 0(Se)) = min(w(Si1), B(S12));
[n = 25; p=0.01,0.1,0.25, 1.00;
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Figure B.109: Traveling salesman problem —
optimal penalty parameters €4 (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
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Figure B.111: Traveling salesman problem —
relative part of simulation runs 75 (p,c) with
min(®(5;1), ®(Se,.)) < min(d(S;1), d(Si2));
[n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
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Figure B.113: Traveling salesman problem —

98% certain maximal error ¢, (p, c);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10]
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Figure B.110: Traveling salesman problem —
optimal average time rates Ye, (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
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Figure B.112: Traveling salesman problem —
relative part of simulation runs rZ (p,c) with
min(®(S)1), ®(Se, ) = min(®d(S)1), d(S12));

[n = 25; I. = {0.025,0.05, ...,2.50}; T = 10
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Figure B.114: Traveling salesman problem —

—H-c=4
—©—-c=8
—A—c=16
—+—c=32
c=64

—H-c=4
—©—-c=8
—A—c=16
—+—¢=32
c=64

—H-c=4
—©-c=8
~A—c=16
—+—c=32
c=64

loss of quality Axo.1(p, c) by overestimating €. by 0.1;

[n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
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Figure B.115: Traveling salesman problem —
optimal penalty parameters e« (n);
[I. = {0.025,0.050,...,1.50}; T = 109]
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Figure B.117: Traveling salesman problem —
relative part of simulation runs 7 (n) with
min(®(51), ®(Se.,.)) < min(d(Sp1), B(Si2));
[I. = {0.025,0.050,....,1.50}; T = 10%]
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Figure B.119: Traveling salesman problem —

98% certain maximal error dc, (n);
[I. = {0.025,0.050,....,1.50}; T = 10]
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Figure B.116: Traveling salesman problem —
optimal average time rates X, (n);
[I. = {0.025,0.050,...,1.50}; T = 109]
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Figure B.118: Traveling salesman problem —
relative part of simulation runs rZ (n) with
min(®(Sy1), ®(Se, ) = min(d(S;1), B(S12));
[I. = {0.025,0.050, ...,1.50}; T = 109]
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Figure B.120: Traveling salesman problem —
loss of quality Axo.1(n) by overestimating €. by 0.1;
[I. = {0.025,0.050,...,1.50}; T = 109
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B.2.2 Mutual Penalty Method (see Sections 3.4.2, 3.5, [4.1)

B.2.2.1 Assignment Problem
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Figure B.121: Assignment problem —
average cost rates x7* for different ¢;
[n=25; p=0.1; c = 4,8,16,32; T = 109]
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Figure B.123: Assignment problem —
98% certain maximal error 7%;
[n=25; p=0.1; c = 4,8,16,32; T = 109]
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Figure B.122: Assignment problem —
average cost rates x7* for different ¢;
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[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 106]
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Figure B.124: Assignment problem —
98% certain maximal error §7;

[n = 25; p =0.01,0.1,0.25,1.00; ¢ = 8; T = 109]
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Figure B.125: Assignment problem —
relative part of simulation runs rS with

—&-p=0.1;
——p=0.1;
—A-p=0.1;

—%-p=0.1;

c=4
c=8

c=16
c=32

min(®(Sy()), B(S(s))) < min(®d(S;1), d(S12));

[n=25;p=0.1; c =4,8,16,32; T = 109]
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Figure B.127: Assignment problem —
relative part of simulation runs rZ with

—&-p=0.1;
——p=0.1;
—A—p=0.1;
—%p=0.1;

c=4
c=8

c=16
c=32

min(®(Sy()), B(S(-))) = min(®(S;1), d(S12));

[n=25; p=0.1; c = 4,8,16,32; T = 109]
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Figure B.126: Assignment problem —
relative part of simulation runs r< with

min(®(S} (), ©(Sa(e))) < min(®(S;1),0(S12));
[n = 25; p = 0.01,0.1,0.25,1.00; ¢ = 8; T = 109]
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Figure B.128: Assignment problem —
relative part of simulation runs r= with

-B-p=0.01; c=8
——p=0.10; c=8
—/—p=0.25; c=8
% p=1.00; c=8

min(®(S] (), ©(Sa(e))) = min(®(S;1), 0(S12));
[n = 25; p = 0.01,0.1,0.25,1.00; ¢ = 8; T = 109]
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Figure B.129: Assignment problem —

optimal penalty parameters €7 (p, ¢);

[n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
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Figure B.131: Assignment problem —

relative part of simulation runs 75, (p, ¢) with
min(@(S1<EQl))7 ’b(sz(sln))) < min(?b(gll), ’b(glg));
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10%]
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Figure B.133: Assignment problem —
98% certain maximal error 5;”* (p, c);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
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Figure B.130: Assignment problem —

optimal average cost rates xZ" (p, ¢);

[n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
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Figure B.132: Assignment problem —
relative part of simulation runs 75, (p, c) with

min(’b(s’l(gln>),’lb(SQ(Ein))) = min(®(Sy1), ©(S52));
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10]
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Figure B.134: Assignment problem —
loss of quality Axg',(p, c) by overestimating e by 0.1;
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°]
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Figure B.135: Assignment problem —

optimal penalty parameters €7*(n);
[I. = {0.025,0.050,...,1.50}; T = 109]
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Figure B.137: Assignment problem —

relative part of simulation runs r5, (n) with
min(?b(gl(a;"))v@(Szz(s;n))) < min(®(S;1), B(S12));
[I. = {0.025,0.050,. ..,1.50}; T = 10°]
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Figure B.139: Assignment problem —
98% certain maximal error 87" (n);
[I. = {0.025,0.050,...,1.50}; T = 109]
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Figure B.136: Assignment problem —
optimal average cost rates X' (n);
[I. = {0.025,0.050,...,1.50}; T = 109]
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Figure B.138: Assignment problem —
relative part of simulation runs rZ, (n) with

min(dn(gl(ET))”b(SQ(eT))) = min(®(Sp1), B(Si2));
[Ie = {0.025,0.050, . ..,1.50}; T = 10]
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Figure B.140: Assignment problem —
loss of quality Axg'y (n) by overestimating e7* by 0.1;
[I. = {0.025,0.050, ...,1.50}; T = 10°]
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B.2.2.2 Traveling Salesman Problem

1,10

1,05

1,00

A e0s00o

) ABLD
A ALDBES

A AL
0,95 | OOt papansnttsts

0,05

0,90

0,50
055
0,60
0,65
0,70 |+
0,75 |

I
1)
b
[S)

0,10 |
0,15 |
0,20
0,25 |
0,30
0,35

I
o
b
[S)

€

—&-p=0.1;
——p=0.1;
—A—p=0.1;

p=0.1;

c=4
c=8

c=16
c=32

Figure B.141: Traveling salesman problem —

average time rates x7* for different ¢;
[n=25 p=0.1; c=4,8,16,32 T = 10]
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Figure B.143: Traveling salesman problem —

98% certain maximal error §7;
[n=25; p=0.1; c = 4,8,16,32; T = 109]
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Figure B.142: Traveling salesman problem —

average time rates x7* for different ¢;

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 10°]

0,010

0,008

0,006

0,004

0,002

oo B 5

—&-p=0.01; c=8
——p=0.10; c=8
—A—p=0.25; c=8

p=1.00; c=8

0,000

0,05 |-
0,10 |
0,15 |
0,20 |
0,25 |
0,30 |-
035

™ 040
0,45 |-
0,50 |
0,55 |
0,60 |-
0,65
0,70 |-
0,75 [

Figure B.144: Traveling salesman problem —

98% certain maximal error 67";

[n = 25; p=0.01,0.1,0.25,1.00; ¢ = 8; T = 10°]
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Figure B.145: Traveling salesman problem —

relative part of simulation runs r< with

min(?b(gl(a)), ’&0(52(5))) < min(?b(gll), ?b(glg));

[n=25; p=0.1; c = 4,8,16,32; T = 109]
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Figure B.147: Traveling salesman problem —
relative part of simulation runs rZ with
min(®(Sy(e)), B(S2(e))) = min(d(Si1), B(Si2));
[n=25; p=0.1; c = 4,8,16,32; T = 109]
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Figure B.146: Traveling salesman problem —
relative part of simulation runs r= with
min(®(Sy(¢)), B(S2(cy)) < min(d0(Sy1), ®(Si2));
[n = 25; p = 0.01,0.1,0.25,1.00; ¢ = 8; T = 109]
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Figure B.148: Traveling salesman problem —
relative part of simulation runs rZ with
min(dD(Sl(g)), 7*0(52(5))) = min(®(S;1), ©(512));
[n = 25; p = 0.01,0.1,0.25,1.00; c = 8; T = 106)
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Figure B.149: Traveling salesman problem — Figure B.150: Traveling salesman problem —
optimal penalty parameters €7 (p, ¢); optimal average time rates x2" (p, ¢);
—95. T — . — 106
[n =25; I. = {0.025,0.05,...,2.50}; T = 10°] [n = 25; I. = {0.025,0.05, ...,2.50}; T = 109]
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Figure B.151: Traveling salesman problem —
relative part of simulation runs 75, (p, ¢) with

0,64

min(zb(SMsT)), "O(SZ(ET))) < min(?b(gll), ’b(slg));

[n = 25; I. = {0.025,0.05,...,2.50}; T = 10)
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Figure B.152: Traveling salesman problem —
relative part of simulation runs 75, (p, c) with

min(©(Sy(.m)), ®(Sz(em))) = min(®(S11), B(S12));

[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°]
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Figure B.153: Traveling salesman problem — Figure B.154: Traveling salesman problem —
loss of quality Axg',(p, c) by overestimating e* by 0.1;

98% certain maximal error 5;”* (p, c);
[I. = {0.025,0.05,...,2.50}; T = 10]

[n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
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Figure B.155: Traveling salesman problem —

optimal penalty parameters €7*(n);
[I. = {0.025,0.050,...,1.50}; T = 109]
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Figure B.157: Traveling salesman problem —
relative part of simulation runs r5, (n) with
min(?b(gl(a;"))v@(Szz(s;n))) < min(®(S;1), B(S12));
[I. = {0.025,0.050,. ..,1.50}; T = 10°]
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Figure B.159: Traveling salesman problem —
98% certain maximal error 87 (n);
[I. = {0.025,0.050,...,1.50}; T = 10]
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Figure B.156: Traveling salesman problem —
optimal average time rates x2* (n);
[I. = {0.025,0.050,...,1.50}; T = 109]
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Figure B.158: Traveling salesman problem —
relative part of simulation runs rZ, (n) with

min(dn(gl(El”))”b(SQ(eT))) = min(®(Sp1), B(Si2));
[Ie = {0.025,0.050, . ..,1.50}; T = 10]
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Figure B.160: Traveling salesman problem —
loss of quality Axg';(n) by overestimating 7" by 0.1;
[I. = {0.025,0.050,...,1.50}; T = 109]
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Results — (p; 1/¢, ¢)-Model

C.1 Exact Algorithms

C.1 Exact Algorithms

C.1.1

C.1.1.1 Shortest Path Problem
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Figure C.1: Shortest path problem —
average time rates @, for different ¢;
[n =25 p=0.1; c=4,8,16,32; T = 10%]
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Figure C.3: Shortest path problem —
optimal penalty parameters e« (p, c);

[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°]

Penalty Method (see Section 4.2)
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Figure C.2: Shortest path problem —
average time rates ¢, for different ¢;

[n = 25; p=0.01,0.1,0.25,1.00; c = 8; T = 107]
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Figure C.4: Shortest path problem —
optimal average time rates @¢, (p, ¢);

1

[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°]
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Results — (p; 1/¢, ¢)-Model

C.1 Exact Algorithms

C.1.1.2 Assignment Problem
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Figure C.5: Assignment problem —
average cost rates @, for different ¢;
[n=25;p=0.1; c = 4,8,16,32; T = 10%]
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Figure C.7: Assignment problem —
optimal penalty parameters €4 (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10]
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Figure C.6: Assignment problem —
average cost rates @, for different ¢;
[n = 25; p=10.01,0.1,0.25,1.00; c = 8; T' = 10?]
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Figure C.8: Assignment problem —
optimal average cost rates @, (p, ¢);
[n = 25; I = {0.025,0.05,...,2.50}; T = 10%]
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Results — (p; 1/¢, ¢)-Model

C.1 Exact Algorithms

C.1.2 Mutual Penalty Method (see Section 4.2)
C.1.2.1 Shortest Path Problem
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Figure C.9: Shortest path problem —
average time rates @2 for different ¢;
[n=25;p=0.1; c=4,8,16,32; T = 104]
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Figure C.11: Shortest path problem —
optimal penalty parameters €7 (p, ¢);

[n = 25; I. = {0.025,0.05,...,2.50}; T = 10%]
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Figure C.10: Shortest path problem —
average time rates @7* for different ¢;
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[n = 25; p = 0.01,0.1,0.25,1.00; ¢ = 8; T = 10%]
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Figure C.12: Shortest path problem —
optimal average time rates @2 (p, c);

[n = 25; I. = {0.025,0.05,...,2.50}; T = 10%]
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Results — (p; 1/¢, ¢)-Model

C.1 Exact Algorithms

C.1.2.2 Assignment Problem
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Figure C.13: Assignment problem —
average cost rates @7* for different ;
[n=25;p=0.1; c =4,8,16,32; T = 104]
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Figure C.15: Assignment problem —
optimal penalty parameters €7 (p, ¢);

[n = 25; I. = {0.025,0.05,...,2.50}; T = 104]
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Figure C.14: Assignment problem —
average cost rates @Z* for different ¢;

[n = 25; p = 0.01,0.1,0.25,1.00; ¢ = 8; T = 10%]
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Figure C.16: Assignment problem —
optimal average cost rates @7 (p, ¢);

[n = 25; I. = {0.025,0.05,...,2.50}; T = 10%]
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Results — (p; 1/¢, ¢)-Model

C.2 Heuristic Algorithms

C.2 Heuristic Algorithms

C.2.1 Penalty Method (see Section 4.2)

C.2.1.1 Assignment Problem
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Figure C.17: Assignment problem —
average cost rates Y. for different ¢;
[n=25; p=0.1; c = 4,8,16,32; T = 109]

Figure C.18: Assignment problem —
average cost rates x. for different ¢;
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[n = 25; p=0.01,0.1,0.25,1.00; ¢ = 8; T = 106]
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Figure C.19: Assignment problem —
optimal penalty parameters £4(p, c);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10)

Figure C.20: Assignment problem —
optimal average cost rates Xe, (p, ¢);
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Results — (p; 1/¢, ¢)-Model

C.2 Heuristic Algorithms

C.2.1.2
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Figure C.21: Traveling salesman problem —
average time rates Y. for different ¢;
[n=25;p=0.1; c = 4,8,16,32; T = 109]
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Figure C.23: Traveling salesman problem —
optimal penalty parameters e« (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10]
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Figure C.22: Traveling salesman problem —
average time rates x. for different &;
[n = 25; p=0.01,0.1,0.25,1.00; ¢ = 8; T = 109]
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Figure C.24: Traveling salesman problem —
optimal average time rates X, (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
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Results — (p; 1/¢, ¢)-Model

C.2 Heuristic Algorithms

C.2.2 Mutual Penalty Method (see Section 4.2)

C.2.2.1 Assignment Problem

1,04
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0,94 —

Figure C.25: Assignment problem —
average cost rates @7* for different ¢;
[n=25;p=0.1; c = 4,8,16,32; T = 109]
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Figure C.26: Assignment problem —
average cost rates @Z* for different ;

[n = 25; p = 0.01,0.1,0.25,1.00; ¢ = 8; T = 10°]
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Figure C.27: Assignment problem —
optimal penalty parameters €7 (p, ¢);
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Figure C.28: Assignment problem —
optimal average cost rates @2 (p, ¢);

1

[n = 25; I. = {0.025,0.05,...,2.50}; T = 10°] [n = 25; I. = {0.025,0.05,...,2.50}; T = 10°]
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C.2 Heuristic Algorithms

C.2.2.2
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Figure C.29: Traveling salesman problem —
average time rates x7* for different ¢;
[n=25;p=0.1; c = 4,8,16,32; T = 109]
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Figure C.31: Traveling salesman problem —
optimal penalty parameters €7 (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 10]
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Figure C.30: Traveling salesman problem —
average time rates x7* for different ¢;
[n = 25; p=0.01,0.1,0.25,1.00; ¢ = 8; T = 109]
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Figure C.32: Traveling salesman problem —
optimal average time rates X" (p, ¢);
[n = 25; I. = {0.025,0.05,...,2.50}; T = 109]
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Results - (p := 1 — w(e); 1, ¢)-Model D.1 Exact Algorithms

D.1 Exact Algorithms

D.1.1 Penalty Method (see Section 4.2)
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Figure D.1: Shortest path problem — Figure D.2: Assignment problem —
average time rates @, for different «; average cost rates ¢ for different ¢;
[n = 25; ¢ =4,8,16,32; T = 10°] [n=25; c=4,8,16,32; T = 10°]

| c|] 2 [ 4 ] 8 |16 | 32 | 64 |
SP &, [0.075]0.150 [ 0.225 [ 0.275 [ 0.375 | 0.625
(Pe. | 0.988 ] 0.966 | 0.944 | 0.925 | 0.914 | 0.907

ASP ¢, [0.125|0.175| 0.200 | 0.225 | 0.250 | 0.275
e, | 0.98510.965 | 0.949 | 0.939 | 0.933 | 0.931

Table D.1: The optimal penalty parameters £« (c) and the optimal average time/cost rates @e, (c) for the
shortest path problem (SP) and the assignment problem (ASP); [n = 25; ¢ = 2,4, 8,16,32,64; T = 10°]
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Results - (p := 1 — w(e); 1, ¢)-Model D.1 Exact Algorithms

D.1.2 Mutual Penalty Method (see Section 4.2)
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Figure D.3: Shortest path problem — Figure D.4: Assignment problem —
average time rates @2 for different ¢; average cost rates @Z* for different ¢;
[n = 25; c = 4,8,16,32; T = 10%] [n=25; c=4,8,16,32; T = 104]

| c|] 2 [ 4] 8 |16 | 32 | 64 |
SP ey [0.075[0.150 [ 0.275 [ 0.325 [ 0.400 | 0.350

*

o7 1 0.988 [ 0.966 | 0.942 | 0.925 | 0.914 | 0.906
ASP €7 10.100 | 0.150 | 0.175 | 0.225 | 0.200 | 0.225

*

ez 1 0.985 1 0.965 | 0.949 | 0.939 | 0.934 | 0.931

Table D.2: The optimal penalty parameters €J*(c) and the optimal average time/cost rates @2 (c) for the
shortest path problem (SP) and the assignment problem (ASP); [n = 25; ¢ = 2,4,8,16,32,64; T = 10%]
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Results - (p := 1 — w(e); 1, ¢)-Model D.2 Heuristic Algorithms

D.2 Heuristic Algorithms

D.2.1 Penalty Method (see Section 4.2)
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Figure D.5: Assignment problem — Figure D.6: Traveling salesman problem —
average cost rates e for different ¢; average time rates . for different ¢;
[n = 25; ¢ =4,8,16,32; T = 109] [n=25; c=4,8,16,32; T = 109]

| c| 2 [ 4 ] 8 [ 16| 32 | 64 |
ASP &, [0.150 [ 0.150 [ 0.200 | 0.250 | 0.275 | 0.250
Xe. | 0.998 ] 0.997 | 0.997 | 0.995 | 0.995 | 0.995

TSP e, |0.075]0.125 | 0.200 | 0.225 | 0.225 | 0.250
Xe. | 0.998 10.994 | 0.990 | 0.986 | 0.984 | 0.983

Table D.3: The optimal penalty parameters e«(c) and the optimal average cost/time rates e, (c) for the
assignment problem (ASP) and the traveling salesman problem (T'SP); [n = 25; ¢ = 2,4, 8,16, 32,64; T = 109)

128



Results - (p := 1 — w(e); 1, ¢)-Model

D.2 Heuristic Algorithms

D.2.2 Mutual Penalty Method (see Section 4.2)
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Figure D.7: Assignment problem — Figure D.8: Traveling salesman problem —
average cost rates @7* for different ¢; average time rates @7* for different ¢;
[n = 25; c = 4,8,16,32; T = 109] [n=25; ¢ =4,8,16,32; T = 109]
| c| 2 [ 4 ] 8 [ 16| 32 | 64 |
ASP e |0.225]0.250 | 0.300 | 0.325 | 0.325 | 0.350
X2 1 0.997 1 0.995 | 0.994 | 0.993 | 0.992 | 0.991
TSP ¢ |0.075]0.125 | 0.150 | 0.200 | 0.200 | 0.225
X2 1 0.997 1 0.992 | 0.987 | 0.984 | 0.982 | 0.981

Table D.4: The optimal penalty parameters €J*(c) and the optimal average cost/time rates x2* (c) for the
assignment problem (ASP) and the traveling salesman problem (TSP); [n = 25; ¢ = 2,4, 8,16, 32,64; T = 109)
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Results —
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Results — (p := c-g-%; 1,¢)(1 — p; %, 1)-Model E.1 Exact Algorithms

E.1 Exact Algorithms

E.1.1 Penalty Method (see Section 4.2)
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Figure E.1: Shortest path problem — Figure E.2: Assignment problem —
average time rates @, for different «; average cost rates ¢. for different ¢;
[n = 25; ¢ =4,8,16,32; T = 10°] [n=25; c=4,8,16,32; T = 10°]

| c|] 2 [ 4 ] 8 |16 | 32 | 64 |
SP &, [0.100 [ 0.150 [ 0.225 [ 0.425 [ 0.575 | 1.050
Pe. | 0.976 | 0.938 | 0.886 | 0.821 | 0.742 | 0.661

ASP ¢, |0.150 | 0.250 | 0.425 | 0.700 | 1.000 | 1.500
e, | 0.967 | 0.916 | 0.853 | 0.779 | 0.700 | 0.630

Table E.1: The optimal penalty parameters e« (c) and the optimal average time/cost rates @., (¢) for the
shortest path problem (SP) and the assignment problem (ASP); [n = 25; ¢ = 2,4, 8,16,32,64; T = 10°]
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Results — (p := c_%l; 1,¢)(1 — p; %, 1)-Model E.1 Exact Algorithms

E.1.2 Mutual Penalty Method (see Section 4.2)
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Figure E.3: Shortest path problem — Figure E.4: Assignment problem —
average time rates @2 for different ¢; average cost rates @Z* for different ¢;
[n=25; c=4,8,16,32; T = 10%] [n=25; c=4,8,16,32; T = 10%]

| c|] 2 [ 4] 8 |16 | 32 | 64 |
SP ey [0.075]0.150 [ 0.250 [ 0.325 [ 0.525 [ 0.725

*

o7 1 0.976 | 0.937 | 0.886 | 0.824 | 0.735 | 0.655
ASP €7 10.125|0.225 | 0.400 | 0.425 | 0.875 | 1.250

*

o7 1 0.968 [ 0.914 | 0.848 | 0.781 | 0.698 | 0.639

Table E.2: The optimal penalty parameters €}*(c) and the optimal average time/cost rates @2* (c) for the
shortest path problem (SP) and the assignment problem (ASP); [n = 25; ¢ = 2,4,8,16,32,64; T = 10%]
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E.2 Heuristic Algorithms

E.2.1 Penalty Method (see Section 4.2)
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Figure E.5: Assignment problem — Figure E.6: Traveling salesman problem —
average cost rates e for different ¢; average time rates . for different ¢;
[n = 25; ¢ =4,8,16,32; T = 109] [n=25; c=4,8,16,32; T = 109]

| c| 2 [ 4 ] 8 [ 16| 32 | 64 |
ASP &, [0.150[0.200 [ 0.375 | 0.600 | 1.000 | 1.450
Xe. | 0.998 ] 0.995 | 0.988 | 0.974 | 0.949 | 0.916

TSP e, |0.100]0.175]0.325 | 0.525 | 0.775 | 1.250
Xe. | 0.996 | 0.986 | 0.963 | 0.924 | 0.866 | 0.802

Table E.3: The optimal penalty parameters e« (c) and the optimal average cost/time rates Xe, (¢) for the
assignment problem (ASP) and the traveling salesman problem (TSP); [n = 25; ¢ = 2, 4,8, 16,32,64; T = 109)
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Results — (p := c_%l; 1,¢)(1 — p; %, 1)-Model E.2 Heuristic Algorithms

E.2.2 Mutual Penalty Method (see Section 4.2)
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Figure E.7: Assignment problem — Figure E.8: Traveling salesman problem —
average cost rates @7* for different ¢; average time rates @7* for different ¢;
[n=25; c=4,8,16,32; T = 109] [n=25; c=4,8,16,32; T = 109]

| c| 2 [ 4 ] 8 [ 16| 32 | 64 |
ASP ey [0.225]0.275[0.400 [ 0.475 [ 0.675 [ 0.975

*

X2 1 0.996 | 0.991 | 0.983 | 0.968 | 0.943 | 0.913
TSP €7 |0.100|0.175]0.275 | 0.375 | 0.575 | 0.750

*

X2 1 0.994 |1 0.982 | 0.960 | 0.922 | 0.867 | 0.811

Table E.4: The optimal penalty parameters €*(c) and the optimal average cost/time rates x2* (c) for the
assignment problem (ASP) and the traveling salesman problem (TSP); [n = 25; ¢ = 2,4, 8,16, 32,64; T = 109)
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Appendix F

Results — OSN (1, ¢?)-Model
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Results - OSN (1, ¢?)-Model

F.1 Exact Algorithms

F.1 Exact Algorithms

F.1.1 Penalty Method (see Section 4.2)
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Figure F.1: Shortest path problem —

average time rates @, for different «;

[n = 25; ¢ =4,8,16,32; T = 10°]
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Figure F.2: Assignment problem —
average cost rates @ for different ¢;
[n=25; c=4,8,16,32; T = 10°]
c | 1 2 | 4 [ 8 [ 16 ] 32 |
SP e, |0.075]0.100 | 0.125 | 0.125 | 0.125 | 0.150
e, 10.98210.972 1 0.963 | 0.956 | 0.952 | 0.950
ASP g, [0.125]0.175 | 0.200 | 0.225 | 0.225 | 0.225
©Pe, 10.97510.961 | 0.949 | 0.939 | 0.935 | 0.931

Table F.1: The optimal penalty parameters €«(c) and the optimal average time/cost rates @., (c) for the

shortest path problem (SP) and the assignment problem (ASP); [n = 25; ¢ = 2,4, 8,16,32,64; T = 10°]
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Results - OSN (1, ¢?)-Model

F.1 Exact Algorithms

F.1.2 Mutual Penalty Method (see Section 4.2)
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Figure F.3: Shortest path problem — Figure F.4: Assignment problem —
average time rates @2 for different ¢; average cost rates @Z* for different ¢;
[n = 25; c = 4,8,16,32; T = 10%] [n=25; c=4,8,16,32; T = 104]

| c|] 1 [ 2] 4 ] 8 |16 | 32|

SP &7 |0.075|0.100 | 0.100 | 0.100 | 0.125 | 0.150

o7 1 0.981 1 0.972 | 0.963 | 0.957 | 0.952 | 0.950

ASP e7 10.125|0.150 | 0.175 | 0.200 | 0.200 | 0.200

ez 1 0.975 |1 0.961 | 0.948 | 0.939 | 0.934 | 0.932

Table F.2: The optimal penalty parameters €7*(c) and the optimal average time/cost rates @* (c) for the

shortest path problem (SP) and the assignment problem (ASP); [n = 25; ¢ = 2,4,8,16,32,64; T = 10%]
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Results - OSN (1, ¢?)-Model F.2 Heuristic Algorithms

F.2 Heuristic Algorithms

F.2.1 Penalty Method (see Section 4.2)
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Figure F.5: Assignment problem — Figure F.6: Traveling salesman problem —
average cost rates e for different ¢; average time rates . for different ¢;
[n = 25; ¢ =4,8,16,32; T = 109] [n=25; c=4,8,16,32; T = 109]

| c|] 1 | 2 [ 4 ] 8 [ 16 | 32|
ASP £, [0.1250.150 [ 0.150 [ 0.200 | 0.225 | 0.225
Xe. | 0.99810.997 | 0.997 | 0.997 | 0.996 | 0.996

TSP e, |0.075]0.100 | 0.125 | 0.150 | 0.175 | 0.175
Xe. | 0.998 1 0.995 | 0.993 | 0.991 | 0.990 | 0.989

Table F.3: The optimal penalty parameters €«(c) and the optimal average cost/time rates xe, (c) for the
assignment problem (ASP) and the traveling salesman problem (T'SP); [n = 25; ¢ = 2,4, 8,16, 32,64; T = 109)
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Results - OSN (1, ¢?)-Model

F.2 Heuristic Algorithms

F.2.2

Mutual Penalty Method (see Section 4.2)
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Figure F.7: Assignment problem — Figure F.8: Traveling salesman problem —
average cost rates @7* for different ¢; average time rates @7* for different ¢;
[n=25; c=4,8,16,32; T = 109] [n=25; c=4,8,16,32; T = 109]
| c| 1 [ 2 ] 4] 8 |16 | 32|
ASP &7 |0.200 | 0.200 | 0.200 | 0.275 | 0.250 | 0.300
X2 1 0.997 1 0.996 | 0.995 | 0.994 | 0.993 | 0.993
TSP ¢ |0.075]0.100 | 0.125 | 0.150 | 0.150 | 0.150
X2 1 0.995 1 0.993 [ 0.990 | 0.989 | 0.988 | 0.987

Table F.4: The optimal penalty parameters €7*(c) and the optimal average cost/time rates Xz (c) for the
assignment problem (ASP) and the traveling salesman problem (TSP); [n = 25; ¢ = 2,4, 8,16, 32,64; T = 109)
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